
1

HAVC User Guide

Ver 1.5.6 – February 2025

(based on HAVC 5.0.4 and Hybrid 2025.02.12.1)

2

Table of Contents

1.0 Introduction .. 4

2.0 Installation .. 6

2.1 Installation of Development Version ... 7

3.0 Using the Filter ... 8

3.0.1 Suggested settings for x265 encoding... 8

3.0.2 Coloring filters configuration page ... 9

3.1 HAVC pre- and post- process filters .. 12

3.1.1 Post-process filters .. 12

3.1.2 Pre-process Filters ... 12

3.2 Chroma Adjustment ... 13

3.3 Color Mapping .. 14

3.4 Merging the models ... 15

3.5 Exemplar-based Models ... 16

3.5.1 The new features problem .. 18

3.5.2 Using Deep-Exemplar to speed-up the encoding ... 19

4.0 Coloring using Hybrid ... 20

4.0.1 Best settings for colors temporal stability .. 21

4.0.2 Best settings to remove colors shifting towards red .. 22

4.1 HAVC Color Mapping/Chroma Adjustment ... 25

4.1.1 Example of Color Mapping .. 25

4.1.2 Example of Chroma Adjustment ... 27

4.2 Advanced coloring using adjusted reference frames .. 28

4.3 Using HAVC to restore old colored videos. .. 34

4.3.1 Fixing DeepRemaster problems .. 36

4.4 Using HAVC Models merging .. 39

4.4.1 Alternative inference models to DDcolor ... 40

5.0 Using external filters to improve final HAVC color quality .. 41

5.1 Using LUT (Lookup Tables) as post-process filter .. 41

5.2 Using Retinex as pre-process filter... 43

6.0 HAVC Functions reference .. 48

6.1 HAVC_main ... 48

6.2 HAVC_deepex ... 51

6.3 HAVC_colorizer ... 54

6.4 HAVC_stabilizer .. 58

6.5 HAVC_read_video ... 60

6.6 HAVC_restore_video .. 61

3

6.7 HAVC_SceneDetect ... 63

6.8 HAVC_extract_reference_frames ... 64

6.9 HAVC_export_reference_frames ... 66

6.10 HAVC_bw_tune ... 67

6.11 HAVC_merge ... 68

6.12 HAVC_recover_clip_color ... 70

7.0 Sample scripts ... 71

Example 1: script to restore a colored video using DeepRemaster .. 72

Example 2: Merging of 2 colored clips and restore of the original luma e resolution of B&W clip 72

Example 3: Remove the flickering produced by DeepRemaster .. 73

Example 4: Merging a DeepRemaster clip with a simple colored clip with HAVC_merge 73

Example 5: Recover DeepRemaster gray colors using a colored clip with HAVC_recover_clip_color 74

8.0 Useful companion software ... 75

8.0.1 Software for coloring pictures... 75

8.0.2 Software for processing batch of pictures .. 75

8.2 Useful Web Links .. 75

4

1.0 Introduction
This guide has been written to describe the Vapoursynth filter Hybrid Automatic Video Colorizer available on GitHub

under MIT License.

The filter (HAVC in short)1 was developed to provide a simple way to coloring black and white movies. Due to the

technical limitations lots of videos filmed in the last century are in black and white, making them less visually appealing,

but most of these videos have historical values and colorizing them could help to restore their appeal especially to

younger audiences. In order to add coloring capability to Vapoursynth, the filter is able to combine the results provided

by DeOldify and DDColor , and in alternative to DDcolor can use the models provided in the project Colorization2. These

models are some of the best models available for coloring pictures, and by combining them, the filter HAVC is able to

obtain final colorized images, that often are better than the images obtained from the individual models.

Unfortunately, directly applying existing image colorization methods does not generate satisfactory colorized videos,

as minor perturbations in consecutive input video frames, may lead to substantial differences in colorized video results.

To overcome this problem, additional specialized filters have been developed for HAVC, that help improve the final

quality of the videos.

In addition, to further improve the temporal stability of the colors, has been added the ability to provide the frames

colored with HAVC directly as reference images to ColorMNet , Deep Exemplar based Video Colorization model (DeepEx

in short) and DeepRemaster. DeepEx, DeepRemaster and ColorMNet are exemplar-based video colorization models,

which allow to colorize a movie starting from an external-colored reference image. They allow to colorize a Video in

sequence based on the colorization history, enforcing its coherency by using a temporal consistency loss. ColorMNet

is more recent and advanced respect to DeepEx3 and it is suggested to use it as default exemplar-based model.

DeepRemaster has the interesting feature to be able store the reference images, so that is able to manages situations

where the reference images not are synchronized with the movie to colorize. Conversely ColorMNet is not storing the

full reference frame image (like DeepRemaster) but it stores only the key points (e.g., representative pixels in each

frame). This imply that the colored frames could have some colors that are very different from the reference image.

DeepRemaster has not this problem since it stores the full reference image. Unfortunately, the number of reference

images that DeepRemaster is able to use depends on GPU memory and power, because the time required for inference

increase with the number of reference images provided. Instead ColorMNet has some interpolation capability while

DeepRemaster is very basic and is unable to properly colorize a frame if is missing a reference image very similar and

it need a lot of reference images to be able to properly colorize a movie (the time resolution of DeepRemaster is 15

frames). So, the choice of which exemplar-based video colorization model to use depends on the source to colorize

and the number of reference image available.

This guide contains some useful tips, but as everyone knows, the best way to learn is to personally experiment with

the functions and parameters present in HAVC4. Unfortunately, was not possible to provide a one size fits-all solution

for coloring the movies. The HAVC parameters suggested in this guide were defined to address the most common

1 The first coloring filters added in Hybrid were DDColor and DeOldify. Subsequently, the DeOldify filter was extended adding the
possibility to use DDColor to improve the color quality and the filter was renamed DDeoldify, then the filter was extended to use
more coloring methods, including ColorMNet and the Deep Exemplar based Video Colorization, hence the name of the filter was
changed in HAVC, because is using a mixture of models (currently are implemented 4 picture-base and 3 exemplar-based models).
2 The project Colorization includes 2 models: Real-Time User-Guided Image Colorization with Learned Deep Priors (Zhang, 2017)
and Colorful Image Colorization (Zhang, 2016). The Zhang (Siggraph, 2017) model is a fairly famous model also adopted by some
commercial software. These 2 models have been added as alternative models to DDcolor (named: siggraph17, eccv16) in short
Zhang’s models. These models have the same problem of temporal stability of colors observed in DDcolor and thus share the same
tweaks developed for DDcolor and in some cases could provide a valid alternative.
3 In the chapter on HAVC speed-up it will be shown that the model Deep-Exemplar can be used to improving the HAVC coloring
speed.
4 There is a thread on Selur forum that can be used to post questions on HAVC filter: DeOldify Vapoursynth filter

https://github.com/dan64/vs-deoldify
https://github.com/jantic/DeOldify
https://github.com/HolyWu/vs-ddcolor
https://github.com/richzhang/colorization
https://github.com/yyang181/colormnet
https://github.com/zhangmozhe/Deep-Exemplar-based-Video-Colorization
https://github.com/satoshiiizuka/siggraphasia2019_remastering
https://github.com/yyang181/colormnet
https://github.com/zhangmozhe/Deep-Exemplar-based-Video-Colorization
https://github.com/satoshiiizuka/siggraphasia2019_remastering
https://github.com/HolyWu/vs-ddcolor
https://github.com/jantic/DeOldify
https://github.com/HolyWu/vs-ddcolor
https://github.com/yyang181/colormnet
https://github.com/zhangmozhe/Deep-Exemplar-based-Video-Colorization
https://arxiv.org/abs/1705.02999
https://arxiv.org/abs/1603.08511
https://forum.selur.net/thread-3595.html

5

situation, but for obtaining the best results, the filter parameters need to be adjusted depending on the specific type

of video to be colored.

The guide is organized as follows: the first chapter is dedicated to the description of Hybrid installation (the installation

of Hybrid is a mandatory requirement for this guide), then there is a chapter describing the HAVC filter and the main

parameters of the filter and their use (the sub-chapters 3.1, 3.2, 3.3, 3.4 are quite technical and could be skipped on

first reading). Next there is the, much more interesting, chapter describing how to use Hybrid to colorize movies (the

sub-chapter 4.1 is quite technical and could be skipped on first reading). Then there is a chapter on using external

filters to improve final HAVC quality. Unfortunately, as often happens, these filters can significantly improve some

frames and worsen the color of others, so they should be used with caution. Finally, there is a chapter with the

reference to the HAVC internal functions. This chapter is useful for the most advanced users, who want to better

understand the scripts generated by Hybrid or want to modify them.

6

2.0 Installation
This filter is distributed with the torch package provided with the Hybrid Windows Addons. To use it on Desktop

(Windows) it is necessary install Hybrid and the related Addons. Hybrid is a Qt-based frontend for other tools (including

this filter) which can convert most input formats to common audio & video formats and containers. It represents the

easiest way to colorize images with the HAVC filter using VapourSynth and for this reason in this guide will be provided

detailed information on how to install and use this filter using Hybrid5.

The main advantages of using Hybrid are:

• The availability of a complete working torch package with all the necessary decencies already installed

(something that for some users could be a nightmare to complete successfully);

• Hybrid is able to automatically generate all the Python/Vapoursynth code to allow to all filters available in

Hybrid to work properly (is not necessary a knowledge of Python/Vapoursynth to be able to use Hybrid);

• Easy access to all the HAVC functions with all parameters properly filled (HAVC as almost 50 parameters, and

it can be very difficult to use it without a good knowledge of the filter or without Hybrid).

To install Hybrid is necessary to download it from https://www.selur.de/downloads, opening the link will be displayed

the following page:

It is necessary to download and install the installer (see point 1).

If is displayed the blue window of Microsoft Defender

SmartScreen it is possible to install anyway by following the

instructions provided in the previous link or by clicking on

More Info and clicking on Run anyway.

It is suggested to install Hybrid in a writable path, like “C:\Hybrid” or “D:\Programs\Hybrid”. Once installed, in the

installation folder create a new subfolder called Settings, then create the file misc.ini with the following lines:

[General]

settingPath=.\\Settings

niceness=0

In this way Hybrid will run in portable mode6.

5 For manual installation see the GitHub page: https://github.com/dan64/vs-deoldify
6 For more useful settings see the page: https://forum.selur.net/thread-10.html

https://www.selur.de/downloads
https://drive.google.com/drive/folders/1vC_pxwxL0o8fjmg8Okn0RA5rsodTcv9G?usp=drive_link
https://www.vapoursynth.com/
https://www.selur.de/downloads
https://www.advancedinstaller.com/prevent-smartscreen-from-appearing.html
https://www.advancedinstaller.com/prevent-smartscreen-from-appearing.html
https://github.com/dan64/vs-deoldify#installation
https://forum.selur.net/thread-10.html

7

After having installed Hybrid, it is necessary to click on the link GoogleDrive (see point 2), it will be displayed the

following page:

The most important file to download is the archive containing the torch packages which are necessary to use HAVC. In

this case the file is named: VapoursynthR70_torch_2024.12.27.7z.

By opening it with 7-zip will be displayed the following

window.

It is necessary to extract the folder Vapoursynth

on the related location in the installation folder. In this

case it is assumed the Hybrid has been installed in

“D:\Programs\Hybrid”, in the case Hybrid was

installed in a different folder it is necessary to change

the destination path (highlighted in blue in the picture

on the left) accordingly.

2.1 Installation of Development Version
Sometime to get the most updated version of HAVC filter is necessary to install the Development version of Hybrid.

In this case all the files to be downloaded are available in the folder experimental on GoogleDrive, as shown in the

following picture:

It is necessary first to download and run the installer (see point 1) and then to download and extract the torch addon

archive (see point 2) as described previously.

8

3.0 Using the Filter
Once Hybrid is installed it is possible to use it to coloring B&W movies. The clip to be colored can be added in input to

Hybrid by using drag-and-drop. In the following picture is displayed the Hybrid main GUI window.

GUI Explanation7:

1) Input field, the clip can be inserted with drag-and-drop or by selecting the big arrow on the right of the text

box

2) Encoding button, by pressing it Hybrid will start to encode the clip

3) Video encoder, in this case has been selected x265 (the encoder options are available in the tab “x265”)

4) Audio encoder, in this case has been selected “passthrough all”, all the audio tracks will be included in the

container untouched.

5) Media information page

6) Name to be used for the new encoded clip (in this case is auto generated).

7) The container used to store the encoded clip, in this case “mkv”.

3.0.1 Suggested settings for x265 encoding
In the following picture are shown the suggested settings for encoding with h265 at 10-bits (tab “x265”)

7 In the following post (a little outdated) is available a small guide to Hybrid: https://forum.selur. net/thread-282.html

https://forum.selur.net/thread-282.html

9

With these settings the movie will be encoded at 10 bits, this will increase the color accuracy. When is selected fast

and grain (in this order) it is necessary to click on the big arrows on the right to apply them (in the same order).

The constant factor (CF) of 18.00 should be good enough. To get more quality the CF can be decreased till 15.00 (lower

values will increase only the size with very little quality improvement).

3.0.2 Coloring filters configuration page
In Hybrid there are a lot of filters, the coloring filters are available at: Filtering->Vapoursynth->Color->Coloring.

The HAVC filter is available under the checkbox HAVC. The filter was developed having in mind to use it mainly to

colorize movies. Both DeOldify and DDcolor are good models for coloring pictures, but when are used for coloring

movies they are introducing artifacts that usually are not noticeable in the images but are well observable in the

colored movie. Especially in dark scenes both DeOldify and DDcolor are not able to understand what it is the dark area

and what color to give it, they often decide to color these dark areas with blue, then in the next frame this area could

become red and then in the next frame return to blue, introducing a flashing psychedelic effect when all the frames

are put in a movie. To try to solve this problem has been developed pre- and post- process filters.

The HAVC filter panel can be divided in 2 group-box (see red rectangles on the picture below):

1) The Presets group-box, that allows to set all the filter parameters of the custom section (which are more than

35). It represents, the easiest way to use the filter to get good results. The parameters in this group box are

used as input for the internal filter function HAVC_main.

2) The Exemplar-based Models group-box. Using this section is possible to change all the filter parameters related

to the exemplar-base color models: ColorMNet, DeepRemaster and DeepEx. These parameters are used as

input to the internal filter function HAVC_deepex.

10

The Coloring field in the group-box 1 (see picture on the right), allows to select

the pictures-based color models: DeOldify, DDColor and Zhang (siggraph17,

eccv16) and their combination. The DeOldify has 3 networks where the Video

network is the most stable. DeOldify is the only model with a network trained

for coloring videos and using it with the other color models will improve the

color stability and quality as shown in the section Comparison of Models on

GitHub.

The meaning of remaining group-box filters is the following:

• Color map: this field allows to select the Color Mapping presets;

• Color tweaks: the fields ColorFix and Denoise (ColorTune) are the

Tweaks parameters developed for the pictures-based models. It is

possible to disable the tweaks by setting this field to none. The

parameter Denoise has effect also on the strength of Color map;

• Stabilize: it allows to define the weight to assign to the DeOldify Video stabilization network when used in

combination with DDColor and the Alternative color models (suggested presets are: Stable and MoreStable).

• Combine: it allows to define the method adopted by HAVC to merge the frames colored by 2 models.

• Speed: it allows to select the most appropriate parameters to get the best balance between quality and speed

(suggested presets is: medium). This table display the full mapping of Speed to RenderFactor:
Model placebo veryslow slower slow medium fast faster veryfast

DeOldify (RF) 32 30 28 26 24 22 20 16

DDColor (RF) 44 36 32 28 24 22 20 16

The most colorful movies can be obtained using the single pictures-based color models. But the resulting video will be

almost unwatchable and this is the main reason behind the development of HAVC. It is possible to improve the color

stability using the combined color models proposed in the field Speed above and setting the Color tweaks to medium.

In the chapter Coloring using Hybrid will be suggested some settings that will allow to improve further the color

temporal stability and, in the chapter, Best settings for color temporal stability will be provided what could be the

optimal settings to get movies with colors very stable. Unfortunately, the color stability has a cost, not only in term of

computational speed but also and above all, in terms of variety of colors. With the increase of color stability will

decrease the variety and saturation of the colors. Some useful filters, which will be possible to add as post-process to

improve the saturation of the colors, can be found in the panel: Filtering->Vapoursynth->Color->Basic as shown in the

picture below (with some suggested settings):

https://github.com/dan64/vs-deoldify#comparison-of-models

11

It is recommended to always remove all the black bars (if any) before applying the coloring filters. It is possible to

remove the black bar in Hybrid, using the dedicated page Crop/Resize (see picture below). It is necessary to enable

the Picture Crop (1) and then insert the appropriate number of pixels in the Crop box (2). It is possible to preview the

crop by clicking on the Preview Crop button (3).

12

3.1 HAVC pre- and post- process filters
The main filters introduced are8:

3.1.1 Post-process filters
Chroma Smoothing: This filter allows to reduce the vibrancy of colors assigned by DeOldify/DDcolor by using the

parameters de-saturation and de-vibrancy, the effect on vibrancy will be visible only if the option chroma resize is

enabled (default), otherwise this parameter has effect on the luminosity. The area impacted by the filter is defined by

the thresholds dark/white. All the pixels with luma below the dark threshold will be impacted by the filter, while the

pixels above the white threshold will be left untouched. All the pixels in the middle will be gradually impacted

depending on the luma value (see related parameters).

Chroma Stabilization: This filter will try to stabilize the frames' colors. As explained previously since the frames are

colored individually, the colors can change significantly from one frame to the next, introducing a disturbing psychedelic

flashing effect. This filter tries to reduce this by averaging the chroma component of the frames. The average is

performed using a number of frames specified in the Frames parameter. Are implemented 2 averaging methods:

1. Arithmetic average: the current frame is averaged using equal weights on the past and future frames

2. Weighted average: the current frame is averaged using a weighed mean of the past and future frames, where

the weight decreases with the time (far frames have lower weight respect to the nearest frames).

As explained previously the stabilization is performed by averaging the past/future frames. Since the non-matched

areas of past/future frames are gray because is missing in the past/future the color information, the filter will apply a

color restore procedure that fills the gray areas with the pixels of current frames (eventually de-saturated with the

parameter "sat"). The image restored in this way is blended with the non-restored image using the parameter "weight".

The gray areas are selected by the threshold parameter "tht". All the pixels in the HSV color space with "S" < "tht" will

be considered gray. If is detected a scene change (controlled by the parameter "tht_scen"), the color restore is not

applied (see related parameters).

Darkeness: this post process filter will force the dark areas of a frame, identified by the region of pixels having a luma

below the dark_threshold, to have a dark color, the dark color is obtained by de-saturating the pixels by an amount

specified by the parameter dark_amount (see related parameters).

3.1.2 Pre-process Filters
DDColor Tweaks: This filter is available only for DDColor and has been added because has been observed that the

DDcolor's inference is quite poor on dark/bright scenes depending on the luma value. This filter will force the luma of

input image to don't be below the threshold defined by the parameter luma_min. Moreover, this filter allows to apply

a dynamic gamma correction. The gamma adjustment will be applied when the average luma is below the parameter

gamma_luma_min. The adjustment applied to gamma is defined by the following expression:

 gamma_new = MAX[gamma*(luma/gamma_luma_min)^gamma_alpha, gamma_min]

A gamma value > 2.0 improves the DDColor stability on bright scenes, while a gamma < 1 improves the DDColor

stability on dark scenes (see related parameters). Using the dynamic gamma correction is possible to apply a high

tweak gamma (parameter [2] in the tweak parameter list) and then thanks to the dynamic gamma correction

decreasing it with the luma, so that on dark scenes the gamma will < 1. At the following link there is a comparison

between using a gamma = 1 and gamma = 2: https://imgsli.com/MjUyNjY0. For this sample a DDcolor Tweak like this:

ddtweak_p=[0.0, 1.0, 2.8, True, 0.3, 0.6, 0.7, 0.5] is appropriate. It is also possible to specify the Chroma Adjustment

to be applied to the frames colored with DDcolor (and Alternative models) by adding a string parameter. An example

of full tweak is the following:

8 These filters are automatically applied by Hybrid if is selected a rendering speed above faster.

https://imgsli.com/MjUyNjY0

13

ddtweak_p=[0.0, 1.0, 2.5, True, 0.3, 0.6, 0.7, 0.5, "300:360|0.5,0.1"]

In this example the last string parameter represent the Chroma Adjustment that will be explained in the next chapter.

3.2 Chroma Adjustment
Unfortunately, when are applied to movies the color models are subject to assign unstable colors to the frames

especially on the red/violet chroma range. This problem is more visible on DDColor than on DeOldify. To mitigate this

issue was necessary to implement some kind of chroma adjustment. This adjustment allows to de-saturate all the

colors included in a given color range. The color range must be specified in the HSV color space. This color space is

useful because all the chroma is represented by only the parameter "Hue". In this color space the colors are specified

in degree (from 0 to 360), as shown in the HAVC Hue Wheel. It is possible to apply this adjustment on all filters

described previously. Depending on the filter the adjustment can be enabled using the following syntax:

Croma Range

chroma_range = "hue_start:hue_end" or "hue_wheel_name"

for example, this assignment:

chroma_range = "290:330,rose"

specify the range of hue colors: 290-360, because "rose" is hue wheel name that correspond to the range:330-360.

It is possible to specify more ranges by using the comma "," separator.

In HAVC are defined the following hue wheel names:

Name Chroma Range

red “0:30”

orange “30:60”

yellow “60:90”

yellow-green “90:120”

green “120:150”

blue-green “150:180”

cyan “180:210”

blue “210:240”

blue-violet “240:270”

violet “270:300”

red-violet “300:330”

rose “330:360”

Chroma Adjustment

When the de-saturation information is not already available in the filter's parameters, it necessary to use the following

syntax:

chroma_adjustment = "chroma_range|sat,weight"

in this case it is necessary to specify also the de-saturation parameter "sat" and the blending parameter "weight".

for example, with this assignment:

chroma_adjustment = "300:340|0.4,0.2"

14

the hue colors in the range 300-340 will be de-saturated by the amount 0.4 and the final frame will be blended (with

weight 0.8=1-0.2) with the frame obtained by applying a de-saturation of 0.4 an all the pixels. (if weight=0, no blending

is applied). The weight can also be negative, as shown in the example below:

chroma_adjustment = "300:340|0.4,-0.2"

In this case the hue colors in the range 300-340 will be de-saturated by the amount 0.4 as in the previous example, but

the final frame will be blended (with weight 0.8) with the original (non de-saturated) frame (i.e. will be avoid the merge

with the de-saturated frame in all pixels).

To simplify the usage of this filter has been added the Preset ColorFix which allows to fix a given range of chroma

combination. The strength of the filter (i.e. de-saturation) is controlled by the Preset ColorTune.

3.3 Color Mapping
Using an approach similar to Chroma Adjustment has been introduced the possibility to remap a given range of colors

in another chroma range. This remapping is controlled by the Preset ColorMap. For example, the preset "blue->brown"

allows to remap all the chroma combinations of blue in the color brown. It is not expected that this filter can be applied

on a full movie, but it could be useful to remap the color on some portion of a movie.

To use the color mapping feature is necessary to use the following syntax:

colormap = "chroma_range|hue_shifit,weight"

The color mapping is similar to the chroma adjustment, the difference instead to apply a desaturation to the given

color range is applied a chroma hue shift.

For example, with this setting:

colormap ="30:90|+250,0.8"

the color range “30:90” (corresponding to yellow) will be shifted by +250 degrees, the original will be retained at 80%,

because has been specified the weight=0.8 (the weight given to the adjusted frame is 0.2=1-0.8).

In the chapter HAVC Color Mapping/Chroma Adjustment are provided useful tips on how to use both the Chroma

Adjustment and Color Mapping features provided by this filter.

In HAVC are defined the following color mapping names:

Name Color Mapping

blue->brown 180:280|+140,0.8

blue->red 180:280|+100,0.8

blue->green 180:280|+220,0.8

green->brown 80:180|+260,0.8

green->red 80:180|+220,0.8

green->blue 80:180|+140,0.8

redrose->brown 300:360,0:20|+40,0.8

redrose->blue 300:360,0:20|+260,0.8

red->brown 320:360,0:15|+50,0.8

yellow->rose 30:90|+300,0.8

15

3.4 Merging the models
As explained previously, this filter is able to combine the results provided by DeOldify and DDColor, to perform this

combination has been implemented 6 methods:

0. DeOldify only coloring model (no merge).

1. DDColor only color model (no merge).

2. Simple Merge: the frames are combined using a weighted merge, where the parameter merge_weight

represent the weight assigned to the frames provided by the DDcolor model, using the following weighted

sum: f_out = f_deoldify*(1- merge_weight) + merge_weight *f_ddcolor (see related parameter).

3. Constrained Chroma Merge: given that the colors provided by DeOldify Video model are more conservative

and stable than the colors obtained with DDcolor. The frames are combined by assigning a limit to the amount

of difference in chroma values between DeOldify and DDcolor. This limit is defined by the parameter threshold.

The limit is applied to the frame converted to "YUV". For example, when threshold=0.1, the chroma values

"U","V" of DDcolor frame will be constrained to have an absolute percentage difference respect to "U","V"

provided by DeOldify not higher than 10%. If merge_weight is < 1.0, the chroma limited DDColor frames will

be will be merged again with the frames of DeOldify using the Simple Merge (see related parameter).

4. Luma Masked Merge: the behavior is similar to the method Adaptive Luma Merge. With this method the

frames are combined using a masked merge. The pixels of DDcolor's frame with luma < luma_limit will be filled

with the (de-saturated) pixels of DeOldify, while the pixels above the white_limit threshold will be left

untouched. All the pixels in the middle will be gradually replaced depending on the luma value. If the

parameter merge_weight is < 1.0, the resulting masked frames will be merged again with the non-de-saturated

frames of DeOldify using the Simple Merge (see related parameter).

5. Adaptive Luma Merge: given that the DDcolor performance is quite bad on dark scenes, with this method the

images are combined by decreasing the weight assigned to DDcolor frames when the luma is below the

luma_threshold. For example, with: luma_threshold = 0.6 and alpha = 1, the weight assigned to DDcolor frames

will start to decrease linearly when the luma < 60% till min_weight. For alpha=2, the weight begins to decrease

quadratically, because the formula applied is: ddcolor_weight = MAX[weight * (luma/luma_threshold)^alpha,

min_weight] (see related parameter).

The merging methods 2-5 are leveraging on the fact that usually the DeOldify Video model provides frames which are

more stable, this feature is exploited to stabilize also DDColor. The methods 3 and 4 are similar to Simple Merge, but

before the merge with DeOldify the DDColor frame is limited in the chroma changes (method 3) or limited based on

the luma (method 4). The method 5 is a Simple Merge where the weight decreases with luma.

16

3.5 Exemplar-based Models
As stated previously to stabilize further the colorized videos it is possible to use the frames colored by HAVC as

reference frames (exemplar) as input to the supported exemplar-based models: ColorMNet, Deep Exemplar based

Video Colorization and DeepRemaster.

In Hybrid the Exemplar Models have their own panel, as shown in the following picture:

For the ColorMNet models there are 2 implementations defined, by the field Mode:

• 'remote' (has not memory frames limitation but it uses a remote process for the inference)

• 'local' (the inference is performed inside the VapourSynth local thread but has memory limitation)

The field Preset control the render method and speed, allowed values are:

• 'Fast' (faster but colors are more washed out)

• 'Medium' (colors are a little washed out)

• 'Slow' (slower but colors are a little more vivid)

The field SC thresh define the sensitivity for the scene detection (suggested value 0.10), while the field SC min freq

allows to specify the minimum number of reference frames that have to be generated.

The flag Vivid has 2 different meanings depending on the Exemplar Model used:

• ColorMNet (the frames memory is reset at every reference frame update)

• DeepEx (given that the colors generated by the inference are a little washed-out, the saturation of colored

frames will be increased by about 25%).

• DeepRemaster (given that the colors generated by the inference are a little washed-out, the saturation of

colored frames will be increased by about 15% and the Hue by 8).

The field Method allows to specify the type of reference frames (RF) provided in input to the Exemplar-based Models,

allowed values are:

• 0 = HAVC same as video (default)

• 1 = HAVC + RF same as video

• 2 = HAVC + RF different from video

• 3 = external RF same as video

• 4 = external RF different from video

• 5 = external ClipRef same as video

• 6 = external ClipRef different from video

https://github.com/yyang181/colormnet
https://github.com/zhangmozhe/Deep-Exemplar-based-Video-Colorization
https://github.com/zhangmozhe/Deep-Exemplar-based-Video-Colorization
https://github.com/satoshiiizuka/siggraphasia2019_remastering

17

Where “same as video” implies that the reference frame provided (from file or video clip) is the same as the frame to

be colored with the only exception of the colors. The model DeepRemaster, since it needs to access to the future

frames, can be used only with methods: 3, 4, 5, 6.

It is possible to specify the directory containing the external reference frames by using the field Ref FrameDir. The

frames must be named using the following format: ref_nnnnnn.[png | jpg]. With the methods 5 and 6 it is possible to

select as source of reference frames the path to a video clip. This feature is useful in the case a colored movie is already

available but is necessary to improve the stabilization of colors using the exemplar-based models.

Finally, the flag Reference frames only can be used to export the reference frames generated with the method HAVC

and defined by the parameters SC thresh, SC min freq fields. The fields methods: HAVC + RF same as video and HAVC

+ RF different from video, can be used to correct the colors applied by the HAVC filter.

Supposing, for example that the movie to be colored starts with the logo of film producer. In this case it could be

possible that the frames colored by the color model will apply different colors to the logo. To correct this problem, it is

possible to create a folder that contains the logo reference frames as shown in the picture below:

supposing to have named the folder ref_logo it is possible to use it to properly colorize the logo frames using the

following settings

In this case has been selected the Method HAVC + RF same as video because the reference frames were almost equal

(with the only exception of the colors) to the B&W frames to colorize. To use this method is necessary to provide in

the field Ref FrameDir the path of the directory containing the reference frames to be used by the exemplar-based

model.

When is selected the Method HAVC different from video, it is possible to selected in Ref FrameDir a colored video

(instead of a directory), that will be used to extract the reference frames to be used for the color inference by

ColorMNet[remote all-ref]. This method cannot be used with Ref merge because frames different from video cannot

be safely merged.

18

3.5.1 The new features problem
Unfortunately all the Deep-Exemplar methods have the problem that are unable to properly colorize the new

"features" (new elements not available in the reference frame) so that often these new elements are colored with

implausible colors (see for an example: New "features" are not properly colored)9. To try to fix this problem has been

introduced the possibility to merge the frames propagated by DeepEx with the frames colored with DDColor and/or

DeOldify. The merge is controlled by the field Ref merge, allowed values are:

• 0 = no merge

• 1 = reference frames are merged with very-low weight

• 2 = reference frames are merged with low weight

• 3 = reference frames are merged with medium weight

• 4 = reference frames are merged with high weight

• 5 = reference frames are merged with very-high weight

When the field Ref merge is set to a value greater than 0, the field SC min freq is set =1, to allows the merge for every

frame. This parameter has been added to fix the problem reported in the post New "features" are not properly colored.

For example, in the picture on the left below there is the frame #20 obtained by merging the propagated frame with

the frame colored using DDColor and/or DeOldify. In the middle there is the propagate frame with no merge (the new

features added in the frame were the hands). The reference image used for coloring the frame provided in input to the

model DeepEx is displayed in the picture on the right:

Using ColorMNet the colored frame (with no merge) is a little better10 as shown in the following picture:

The code used to generate the merged frame #20 was:

clip = HAVC_main(clip,Preset='Medium',ColorFix='Violet/Red',ColorTune='Light',

EnableDeepEx=True, DeepExMethod=1, DeepExPreset='Medium', DeepExRefMerge=2,

DeepExModel=1, ScFrameDir="D:/Tests/Green/ref_color")

9 The problem was mitigated with the release of ColorMNet.
10 It is interesting to observe that ColorMNet was able to colorize 1 hand because was a little visible on the reference image.

https://github.com/yyang181/NTIRE23-VIDEO-COLORIZATION/issues/10
https://github.com/yyang181/NTIRE23-VIDEO-COLORIZATION/issues/10
https://github.com/zhangmozhe/Deep-Exemplar-based-Video-Colorization
https://github.com/yyang181/colormnet
https://github.com/yyang181/colormnet

19

3.5.2 Using Deep-Exemplar to speed-up the encoding
The model Deep-Exemplar (DeepEx) has not the memory storage capability of ColorMNet of DeepRemaster, it is just

able to propagate the colors of the reference frames received as input. But its simplicity can be used to speed-up the

HAVC coloring process. An example of this use is shown in the picture below:

In the example above it was selected the model Deep-Exemplar, with the method HAVC. In this case the trick to speed-

up HAVC is to set SC min freq equal to 3. In this way the coloring filter will be called only every 3 frames, thus providing

a theoretical speed-up of about 3x on the coloring process. The actual speed improvement is much less because it is

necessary to introduce the overhead of using DeepEx to propagate the colors, so that the total encoding speed will

increase only of about 40%. Using a SC min freq equal to 4 or 5, will increase further the speed but DeepEx could have

some problems in propagating correctly the colors because of new features problem described previously.

This increase in speed can be used, to use the HAVC preset Speed slower so that the colors generated by HAVC will be

more accurate. This preset is about 40% slower than the suggested preset medium, but using this trick is possible to

obtain an encoding speed similar to the one obtained using the preset Speed medium.

20

4.0 Coloring using Hybrid
As stated previously the simplest way to colorize images with the HAVC filter it to use Hybrid. To simplify the usage has

been introduced standard Presets that automatically apply all the filter's settings. A set of parameters that are able to

provide a satisfactory colorization are the following:

• Speed: medium (slower will increase the color accuracy but with a decrease of about 40% in encoding speed)

• Color map: none

• Color tweaks: violet/red

• Denoise: light

• Stabilize: Stable (or MoreStable)

then enable the Exemplar Models check box and set

• Method: HAVC

• SC thresh: 0.10

• SC SSIM thresh: 0.0

• SC min freq: 15 (5 if is used the local mode)

• normalize: checked

• Mode: remote

• Frames: 0

• Preset: medium (slow will increase the color accuracy but the speed will decrease of 40%)

• Vivid: checked

In the following picture are shown the suggested parameters:

In ColorMNet using the flag Vivid the internal memory will be reset at every new reference frame; this will allow to

assign the maximum weight to the last reference frame during the inference and the color propagation will depend

https://www.selur.de/downloads

21

only from the last reference added. By unchecking Vivid the last reference frame will be added to the internal memory

and the inference will depend from all the reference frames provided in input, this will produce sometime unwanted

blend effect where the propagate colors can be different from the last reference image.

Once all the filter parameters are set it is possible start the encoding process by pressing the Encoding button 2 as

described in the section GUI Explanation.

4.0.1 Best settings for colors temporal stability
Willing to obtain the best results, but at cost of speed it is possible to improve further the color stability using the

settings shown in the following picture:

Respect to the previous configuration has been changed the following parameters (highlighted in red box):

• Speed: medium

• Ref merge: low

• Weight: 0.40 (automatically filled)

• Threshold: 0.10

• Vivid: checked

• Normalize: checked

As explained in The new features problem in this way the frames propagated by exemplar-based models will be merged

with the frames colored with DDColor and/or DeOldify. In practice will be merged 3 frames. This will improve further

the temporal color stability while maintaining the color accuracy, and thus avoiding the color degradation (observed in

the frames propagated using the exemplar-based models) when new features are introduced. The strategy adopted by

HAVC in this case is the following:

1) all the clip frames are colored using DDColor and/or DeOldify (because the parameter SC min freq = 1)

2) using the threshold specified (in this case 0.10) a subset of colored frames is sampled by the scene

change detection algorithm and these frames are used as reference images for the selected exemplar-

based model (in this case ColorMNet).

3) the frames obtained at step 1 are merged with the weight specified (in this case 0.50) with the frames

propagated by the selected exemplar-based model.

This approach will allow to maintain the temporal color consistency provided by the exemplar-based models11 and at

the same time to keep the color quality provided by DDColor and/or DeOldify.

The only methods that can be used with Ref merge are HAVC and HAVC + RF same as video, in this case it is just enough

providing a valid path in the field Ref FrameDir containing the reference images.

11 In ColorMNet the effect is reinforced by setting the parameter Vivid unchecked.

22

Unfortunately, this quality improvement has a cost, and using this approach the encoding speed will decrease about

of 50% respect to the approach suggested previously. The only way to increase the speed is to upgrade the GPU (Nvidia

RTX4070 or above).

4.0.2 Best settings to remove colors shifting towards red
Unfortunately, all the pictures-based color models: DeOldify, DDColor and Zhang (siggraph17, eccv16), suffer from the

problem that they tend to shift the colors towards red. By changing some of the settings described in the previous

chapter it is possible to mitigate the problem. The suggested settings are shown in the following picture:

Respect to the previous configuration has been changed the following parameters (highlighted in red box):

• Color map: red->brown

• Denoise: medium

• Stabilize: morestable

• Ref merge: verylow

• Weight: 0.30 (automatically filled)

As explained previously the Color Mapping allows to change a range of colors in another range, by shifting the Hue

color component (in HSV color space). Using the preset red->brown the pixels in the frames having the specified range

will be shifted toward the brown color. Using the Denoise equal to strong the violet/red components will be strongly

desaturated and this will contribute to mitigate the red-shift problem (if the effect is too strong it is possible to use the

preset medium). To enforce the effect was selected the Stabilize preset morestable, this will lower the weight of color

models DDColor and Zhang (siggraph17, eccv16) which are strongly affected by this problem. Finally, has been selected

the preset Ref merge equal to verylow, so that the frames colorized by ColorMNet will have more weight. The

exemplar-based model ColorMNet is almost not affected by the problem of shifting the colors towards red, and so by

given to it more weight will contribute to mitigate further the problem.

Unfortunately, by using the preset Color map equal to red->brown will change also the color of the skin toward the

yellow-brown. To fix this side

effect it is possible to add as

coloring post-process, the

tweak filter to shift the Hue by a

value of 8.0 (or higher). This

filter can be found in the panel:

Filtering->Vapoursynth->Color-

>Basic as shown in the picture

on the right (with some

23

suggested settings highlighted in red).

At the following links are available some examples of using the proposed settings to reduce the problem of colors

shifting towards red: https://imgsli.com/MzM5MjQ1, https://imgsli.com/MzM5MjQ2, https://imgsli.com/MzM5MjQ3.

The approach described previously works well if there are few environments in the movie. In the case in the movie

there are a lot of different environments indoor/outdoor, the result obtained could be not satisfactory. In this case it is

possible to adopt a different approach by using the settings displayed in the following picture:

Respect to the previous configuration has been changed the following parameter (highlighted in red box):

• SC thresh: 0.09

The parameter SC thresh was lowered to 0.09. For low thresholds below 0.10 the filter will adopt another algorithm

that is able to properly handle this low sensitivity levels12.

For some movies the reference images produced by using a threshold of 0.10 are not enough to allow to ColorMNet

to properly propagate the colors. By lowering the thresholds, the generated reference images will increase, allowing

ColorMNet to improving the color propagation.

It is not suggested to decrease the threshold too much, because this could generate too many reference frames

canceling the stabilizing effect of ColorMNet. This is the reason why it is suggested to start with a threshold of 0.10,

because it is the threshold that will produce the maximum stabilization, and to lower it to 0.09 only if there are video

sequences not properly colored13. Of course, is not guaranteed that by lowering the threshold the problem will be

solved, but it's worth giving it a try.

Not knowing in advance if in the movie there are a lot of different environments indoor/outdoor, and not having time

to do some test, probably the proposed settings using the threshold of 0.09, is the best option to produce a satisfactory

colorized movie.

In the case the movie colored with the settings previously suggested is still not satisfactory because there are still

frames with colors that shift towards red. It is possible to adopt a more conservative approach which consists in using

the colored movies as source for an exemplar-based model. Among all the exemplar-based models the one that

provides the most stable colors is DeepRemaster. Unfortunately, in some cases ColorMNet it is affected by the same

DDcolor problem of introducing red artifacts in the frames, and so it is not suggested using it in this combination.

In the following picture are shown the settings with the more conservative approach available in HAVC to remove the

problem of frames with colors that shift towards red:

12 Unfortunately, the function SCDetect implemented in Vapoursynth is not working properly with thresholds below 0.10.
13 If the video sequences that are not properly colored are few, it is possible to follow the approach described in the chapter on
Advanced coloring using adjusted reference frames, to provide the adjusted reference frames to properly colorize these sequences.

https://imgsli.com/MzM5MjQ1
https://imgsli.com/MzM5MjQ2
https://imgsli.com/MzM5MjQ3

24

Respect to the previous configuration has been changed the following parameter (highlighted in red box):

• Method: external ClipRef same as video

• Model: Deep-Remaster

• Frames: 10

• Ref merge: verylow (or low)

• SC min freq: 10

• Ref File: path to the colored movie colored with HAVC with unsatisfactory colored frames

For DeepRemaster a value of frames equal to 10 will allow the model to provide more conservative colors because

having more reference frames will allow DeepRemaster to smooth the fast color transitions usually observed when

picture-based models are used to colorize movies. A frame number of 4 is the minimum suggested, with a low number

of reference frames the color inference will be about 40% faster but probably the estimated colors will be less

conservative. An extension of this approach will be described in the chapter on using HAVC to restore colored videos.

25

4.1 HAVC Color Mapping/Chroma Adjustment
In this chapter will be described the usage of parameters colormap and chroma adjustment. As suggested in the

previous chapter, the colormap parameter can be used to change a range of colors in another range, and in the previous

chapter this feature was used to mitigate the problem of colors shifting towards red. In this chapter will be shown how

to use it to change the color of a specific portion of a frame. While this chapter can be useful to understand how to

create new color mapping, in the chapter on advanced coloring will be proposed a better way to propagate the color

adjustments.

4.1.1 Example of Color Mapping

Let's start with a simple example.

Here a frame obtained by using the HAVC with the following code

clip = HAVC_colorizer(clip=clip, ddtweak=True)

The colored frame is quite good, but the woman's

hand is almost yellow.

Using the "Color Mapping" feature it is possible to

correct this defect.

The "Color Mapping" feature allows to change a given

range of colors.

To be able to perform the change in necessary to

specify the target range of colors using the HUE

defined in HSV color space.

There are a lot of Painting programs that

allows to see the HUE of a range of pixels, but

the simpler approach is to use the following

HAVC COLOR WHEEL:

In the HSV color space the colors are specified

in degrees from 0 to 360. In this case it is

possible to see the yellow range is between

60 and 90. But to be more conservative it is

better to include also the orange, so that the

chroma range that we want adjust is the

following: "30:90".

Now that we have selected the range; to

change the colors we need to define the HUE

SHIFT that need to be added to arrive to our

preferred range of colors. We want to arrive

in the range that in the HUE WHEEL is called

26

"red-violet"/"rose". To arrive in this range, we need to add about 250 degrees (250+30=280->"violet", 250+90=340-

>"rose").

To perform this mapping is necessary to run this code after HAVC_colorizer()

clip = HAVC_stabilizer(clip=clip, dark=True, colormap="30:90|+250,0.0")

In the picture below it is possible to see the result obtained. The result is quite bad, but it is useful to see the range of

colors that has been changed.

Now we need to specify the last parameter, the

"weight". Using this parameter, it is possible to merge

the image obtained using the color mapping with the

original image.

In this way it is possible to blend the color differences

and obtain a more realistic effect.

Since we want to apply only a little change in color, we

can try to retain the 80% of the original image. This

can be done by using the following code

clip = HAVC_stabilizer(clip=clip, dark=True, colormap="30:90|+250,0.8")

Here the new image:

Now the image is more realistic!

It is possible try to increase the HUE SHIFT to include

also the RED component, this can be obtained by

increasing the shift to 300 degrees.

Let's try the following command

clip = HAVC_stabilizer(clip=clip, dark=True, colormap="30:90|+300,0.8")

Here the image obtained:

Even this image is quite good.

To simplify the comparison was created the following

album: https://imgsli.com/MjYxNjY5

https://imgsli.com/MjYxNjY5

27

4.1.2 Example of Chroma Adjustment

The "Chroma Adjustment" is similar to the "Color Mapping" the difference is that instead to apply a HUE SHIFT to the

selected hue range, the selected colors are de-saturated.

Suppose, for example that in some frames the "Violet/Red" component is too strong. In this case the color is correct

but it is necessary to reduce its intensity, to do that is necessary to de-saturate the color.

For example with this command

clip = HAVC_colorizer(clip=clip, ddtweak=True, ddtweak_p=[0.0, 1.0, 2.5, True, 0.3, 0.6,

0.7, 0.5, "300:360|0.5,0.1"])

the saturation of colors in the range "300:360" (that correspond to "red-violet/rose" of HUE WHEEL) will be reduced

by 50% (parameter "|0.5") the final image will be blended at 10% (parameter ",0.1" after the de-saturation parameter

"|0.5"). In this case the chroma adjustment will be applied only to the frames colored by DDColor.

Willing to apply the de-saturation on the final-colored frame, it is possible to use the following command

clip = HAVC_stabilizer(clip=clip, dark=True, smooth=True, smooth_p=[0.3, 0.7, 0.9, 0.1,

"300:360|0.5,0.1"])

To apply the adjustments to the frames colored by HAVC_colorizer() it is necessary to apply the post-process

filter HAVC_stabilizer().

A helpful way to learn how to use these adjustments is to use the Presets.

In Hybrid when is selected a Preset different from "custom" the filter parameters will be disabled, but their values

will be updated with the setting defined by the Preset.

The Preset that control the "Color Mapping" is Color map while the presets controlling the "Chroma adjustment" are

ColorFix and ColorTune.

28

4.2 Advanced coloring using adjusted reference frames
In this chapter will be described how to improve the coloring process by manually adjusting the reference frames. In

this guide will be used as sample movie to colorize the following clip14: https://archive.org/details/casablanca-1941-

hd-trailer

Having downloaded the test clip, it is possible to add it in input to Hybrid using drag-and-drop. In order to be able to

manually adjust the reference frames, it necessary first to generate and export them in a folder. In the following picture

are shown the filter settings necessary to perform the export:

In the GUI there are 2 preview buttons. The button (1) will allow to preview the filtered frames, while the button (2)

will allow to preview the code automatically generated by Hybrid. The check box Reference frames only is necessary

to enable the export of frames that will be used by ColorMNet to propagate the colors. It is interesting to observe that

in this case SC SSIM thresh has been set to 0.65, this is necessary to filter-out the frames that are similar, since will

14 It is suggested to download it using the TORRENT link.

https://archive.org/details/casablanca-1941-hd-trailer
https://archive.org/details/casablanca-1941-hd-trailer
https://archive.org/download/casablanca-1941-hd-trailer/casablanca-1941-hd-trailer_archive.torrent

29

need to check manually the generated frames, is better to reduce the number of exported frames to the minimum

necessary. For the same reason has been set SC min int to 5, this setting will guarantee that the minimum distance

between 2 consecutive reference images is at least 5 frames. The parameter SC Offset has been set to 10 to increase

the sensitivity of scene changes detection in the case of blended frames.

Once all the parameters are set it is necessary to press the Preview button 1 (shown in the previous image) and wait

(it could be necessary to wait more than 40sec) till is displayed the preview window (in this case the first frame is

black).

Then is necessary open vsViewer (see point 3 in the previous image) that will show the code of preview file (in this

case is tempPreviewVapoursynthFile18_14_55_718.vpy) as shown in the following picture:

Then is necessary to select Script-Benchmark or press F7, as shown in the picture below:

The Benchmark will run the script but will not call the encoding process, to that will not be generated any movie file.

This is useful because in this case, what is necessary to generate, are the reference frames and not the clip.

30

Once the Benchmark is selected will be displayed a window like this:

At the end of the Benchmark in the directory defined in the parameter ScFrameDir will be available all the reference

frames that will be used by HAVC for coloring the B&W clip. In this case should be available 108 frames out of 3073

frames contained in clip, so about 3.5% of the frames were selected as reference frames for the selected coloring

model (in this case ColorMNet). Then is possible to look at the reference frames that will used for coloring the clip as

shown is the following picture:

In the sample provided above is possible to see that the frames 363 and 367 are very similar, but 367 has better colors,

since in this case we are interested in providing the best exemplars to ColorMNet, it is possible to delete the frames

363 and rename the frame 367 in ref_000363.png. When there are similar frames, like in this case, it is better to keep

always the frame that appears first, eventually replacing it with a better colored frame.

Then is possible to see another common situation, a frame that has wrong or not appropriate colors: in the frame 384,

the Humphrey Bogart's jacket is almost pink and not white as it should be. In this case, it is necessary to correct the

color. To correct the color, it could be possible to user the Color Mapping procedure described in the previous chapter,

but is quite complex because is missing a dedicated GUI to perform this kind of mapping. A simplest way is to use a

dedicated software as suggested chapter Useful companion software. In this case it will be used Photoshop Elements

2024 (see software for coloring pictures).

Using Photoshop Elements, the proposed colored image is quite good, as is possible to see in the following picture:

31

Buth the hand on the right is not colored well and is necessary to adjust the color manually as shown in the picture

below:

The situations described previously represent the most common cases that need to be addressed:

1) similar or duplicated frames: in this case is necessary to selected the best frame (eventually by

renaming it) and delete all the remaining frames.

2) frame with wrong colors, in this case it is necessary to adjust the colors.

After having adjusted all the reference frames is possible to finally start to coloring the clip using the settings shown

in the following picture:

32

Having selected the method external RF different from video, the clip will be colored using only ColorMNet and the

reference frames provided in the folder: “ref_casablanca”.

Using the standard method HAVC as shown in the following picture:

the clip will be colored using the previous unadjusted reference frames, so the clip will show the color artifact observed

previously, for this reason has been shown how to adjust the reference frames to improve the color quality.

Alternatively, is possible to create a folder that contains only the fixed/adjusted reference frames, as shown in the

following picture:

 Supposing that the folder is named “ref_casablanca_fixed”, it is possible to color the clip using the following settings:

In this case the filter will use as reference frames the ones colored using HAVC but the frames found in the folder

specified by the parameter Ref FrameDir will have higher priority and eventually will override the frames generated by

HAVC. It is suggested to use HAVC + RF different from video even if in this case is appropriate to select HAVC + RF

same as video since the reference frames were obtained from the same clip that HVC will colorize.

33

By using RF same as video ColorMNet will skip the inference and will provide in output exactly the same colors specified

in the reference frame, but the next frame will be colored using the inference and this could lead in some color

discontinuity between the reference frame and the next frames. By selecting RF different from video, ColorMNet will

apply the inference even on the reference images and this will assure more color uniformity between the reference

image and the next frames.

The reference frames were obtained using the suggested settings for HAVC (see picture below), with the parameter

Stabilize set to stable, but it could be also possible to set it equal to vivid, in this case will probably necessary to perform

more color adjustments.

It is necessary to clarify that by using AI automatic colorizers is not possible to get colorful movies with a great variety

of colors, because this will increase the instability of colors at a level that the colored movies will be almost

unwatchable.

To get colorful movies with a great variety of colors is still necessary a lot of manual work. Using ColorMNet with the

method external RF different from Video will be possible to obtain colorful movies by providing colored reference

images with a great variety of colors.

At the following link there is an example of movie obtained using this approach: The Thing (Colorized, 1951).

Several thousand low-resolution reference images (already available) and hundreds of manually colored images were

used to color this clip. But this is a very time-consuming task and AI automatic colorizers have been developed precisely

to avoid this (boring) manual task.

https://archive.org/details/the-thing-remastered-colorized-1951

34

4.3 Using HAVC to restore old colored videos.
Starting from HAVC 5.0 it is possible to use the filter to restore old colored videos. To explain how to use this feature

will be used as example the colored video: Casablanca InColor.

This is a low-quality movie, and is almost unwatchable, but with HAVC 5.0 it is possible to restore it to full HD resolution.

To do that is necessary the availability of a good HD copy of the movie in B&W. Fortunately in this case is available this

HD version of the movie: Casablanca (1942).

Now to restore the colored movie it is necessary to load in the main Hybrid page the HD version as shown below:

To restore the video, it is necessary to move to the page at: Filtering->Vapoursynth->Color->Coloring.

In HAVC 5.0 has been added the possibility to use an external clip as source for the reference images to be used by the

exemplar-based models to colorize a B&W movie. In HAVC 5.0 are available 3 models: ColorMNet, DeepEx and

DeepRemaster. In the case the B&W movie and the reference-colored movie are perfectly in sync all the 3 models are

suitable to be used to propagate the colors of the refence clip in the B&W movie. But in the case, they are not perfectly

in sync, as often happens, only DeepRemaster is able to properly propagate the colors. This is possible because in the

https://archive.org/details/casablanca1942incolorhumphreybogartingridbergmanpaulhenreidclauderainssydneygree
https://archive.org/details/casablanca.-1942.70th.-aniversary.-blu-ray.-1080p.-dtshdma.-5-audio.x-264-hds

35

HAVC implementation, has been adopted the strategy to provide in input to DeepRemaster 50% of past reference

images and 50% of future reference images, respect to the frame to be colored. In this way DeepRemaster is able to

manage the situation where the reference frames are either ahead or behind the frame to colorize. DeepRemaster

store the full frame in a tensor array and in this way is able to properly apply the colors without compromise. The

others models are not able to manage the reference frames in this way.

Since in this case the 2 movies are not in sync, there is a difference of about 200 frames randomly distributed between

the 2 movies. It will be used DeepRemaster with the following settings:

First all is necessary to check the box Exemplar Models. Then is necessary to select the model Deep-Remaster with

Frames equal to 5015, finally is necessary to select the Method external ClipRef different from video and click on the

big arrow on the right of the box Ref Dir/File. DeepRemaster need a lot of reference frames to properly colorize the

movie so it is necessary to set the parameter SC min freq to a value between 5 and 15 (in this case was set 10).

Now it is possible to start the encoding and if all goes well after a few hours the colorized HD version should be

available16.

A version of the movie in half-HD colored using this approach is available at: casablanca-remastered-colorized-1942.

The color restoration can be applied also if is available a HD version of a movie colored with another tool (for example

DeOldify) in this case could be used the model ColorMNet to provide more stability to the movie colors as shown

below:

In this case it is possible to use the movie also as main clip in Hybrid to colorize. In this way the movie will be

(automatically) converted in B&W and then (re)colored using ColorMNet. From the colored movie will be taken only

the reference images, the remaining frames will be colored by ColorMNet, thus providing more color stability.

15 The maximum suggested value for the frames to be used with DeepRemaster is 50. If the source is perfectly in sync can be used
a lower number of frames 4 or 10. If the difference in frames between the 2 movie is above 200, it is necessary to split the movies
in chunks to reduce the difference on the single chunk.
16 See the Example1 for a VapourSynth script using this approach.

https://archive.org/details/casablanca-remastered-colorized-1942

36

4.3.1 Fixing DeepRemaster problems
As stated previously DeepRemaster is the only model that is able to restore old colored movies. But depending on

the quality of old colored source, DeepRemaster can be affected by the following problems.

1. Flickering

It could happen that if the source is affected by some small flickering effect, DeepRemaster will amplify the effect more

than 10 times. In this case is necessary to apply a de-flicker filter. In the Example3 there is a Vapoursynth script which

uses in combination 2 of most effective filters to move the flickering: HAVC_stabilizer and ReduceFlicker.

2. Inability to apply colors correctly in dark scenes

If the quality of colors in the source movie is bad, DeepRemaster will not be able to properly colorize the frames in

dark scenes. An example of such problem is shown in the picture below.

 (colored source frame) (DeepRemaster output) (frame fixed with Example4)

In this case to fix the frame it is necessary to colorize the full movie with HAVC using for example the Coloring model

Video+Artistic and the Combine method Simple as shown in the picture below.

Once the clip colored with HAVC is available it is possible to use it to get the proper colors to apply in the dark scenes.

Since in this case the problem is mainly limited to the dark scenes is not suggested to apply a simple merge as shown

in the Example2. In this case is better to use the Merging Methods developed in HAVC. In this case the most appropriate

merging method to use are Luma Masked Merge the Adaptive Luma. To use these methods is necessary to write a

simple Vapoursynth script as shown in the Example4 which uses the function HAVC_merge to combine the 2 clips. In

this case was used the Adaptive Luma method, because is able to change the weight adaptively with the Luma,

providing more weight to clipa in the dark scenes and more weight to clipb in the bright scenes.

https://github.com/AmusementClub/ReduceFlicker

37

3. Inability to apply colors correctly both in bright and dark scenes

If the quality of colors in the source movie is very bad, DeepRemaster could not be able to properly colorize the frames

both in bright and dark scenes. In this case the most frequent artifact is that some portion of the frame is desaturated,

almost gray as shown in the pictures below:

Even in this case is necessary to colorize the full movie with HAVC and is not possible to use a simple merge. In effect,

to fix this problem is necessary to use a more sophisticated approach which consists in identifying the desaturated

regions of the frame and apply a color substitution only on these regions. To do that is necessary to build a mask where

the identified regions are white with a gray gradient around the white region to be able to apply a smooth color

substitution. To identify the regions is necessary to provide a threshold that defines when a pixel in desaturated. In the

HSV color space the saturation has value in the range [0, 255], so a reasonable threshold can be in the range [15, 60].

In the picture below are shown the masks built with a threshold of 60 in the HSV color space.

 (Binary Mask) (Gradient Mask)

For this type of problem is not possible to use a simple binary mask where the white pixels are substituted by the

colored pixels, but the binary mask could be useful to easily visualize the desaturated pixels identified using the

assigned threshold. As it is possible to see, in this example, has not been identified only the right side of the face, but

also the wall because is almost white and the uniform. As stated previously, to apply a smooth color substitution is

necessary to build a gradient mask as shown in the picture above on the right.

To implement this special case of color substitution has been implemented a new HAVC filter function that is available

with HAVC version 5.0.4 and is called: HAVC_recover_clip_color. The main parameters of this function are the threshold

level tht (previously explained) and the acceleration parameter alpha (values above 2.0 will preserve more pixels, but

could introduce some artifacts).

38

In the Example5 there is the Vapoursynth code using the proposed approach. In the picture below are shown the

frames (re)colored using the given example.

39

4.4 Using HAVC Models merging
With HAVC it is possible to merge 2 frames generated by different models. To perform this merge are available 4

methods, that can be selected with the parameter Combine.

The parameter Combine allows to select the merging methods used by HAVC to merge the frames colored with

DeOldify and DDcolor. The simplest method is Simple that merge the frames using the weight defined in the parameter

Merge weight.

With the method Constrained Chroma, the frames are combined by assigning a limit to the amount of difference in

chroma values between DeOldify and DDcolor. This limit is defined by the parameter Threshold, as shown in the picture

on the right.

With the method Luma Masked, the frames are combined using a masked merge. The pixels of DDcolor's frame with

luma < luma_limit (called Luma on the GUI) will be filled with the de-saturated (parameter Sat on the GUI) pixels of

DeOldify, while the pixels above the white_limit threshold (called White on the GUI) will be left untouched. All the

pixels in the middle will be gradually replaced depending on the luma value. If the parameter merge_weight is < 1.0,

the resulting masked frames will be merged again with the non-de-saturated frames of DeOldify using the Simple

Merge.

With the method Adaptive Luma, the frames are combined by decreasing the weight assigned to DDcolor frames when

the luma is below the luma_threshold (called Thresh on the GUI). For example, with: luma_threshold = 0.6 and alpha

= 1 (called Exp on the GUI), the weight assigned to DDcolor frames will start to decrease linearly when the luma < 60%

till min_weight (called Weight on the GUI). In practice this method is a Simple Merge where the weight decreases with

luma.

40

4.4.1 Alternative inference models to DDcolor

In alternative to DDcolor, starting from version 4.6.0 of HAVC is also possible, to use for the color inference the 2 models

provide in the project Colorization: Real-Time User-Guided Image Colorization with Learned Deep Priors (named:

siggraph17) and Colorful Image Colorization (named: eccv16). These models have the same color instability observed

in DDcolor and hence have in common the same settings and tweaks of DDcolor. It is suggested to try them without

the Tweaks activated (Denoise and Color tweaks set to none) to see the improvement of this post-process filter on the

colored frames.

In the picture below is possible to see a comparison between the 2 alternative models siggraph17 and eccv16 with the

other models implemented in HAVC:

https://arxiv.org/abs/1705.02999
https://arxiv.org/abs/1603.08511

41

5.0 Using external filters to improve final HAVC color quality
In some cases, it is possible to improve the final color quality of the movies colorized with HAVC using other filters

available in Hybrid. As explained previously, the color stability has a cost in terms of variety of colors. With the increase

of color stability will decrease the variety and saturation of the colors. Some useful filters, which will possible to add

as post-process to improve the saturation of the colors, can be found in the panel: Filtering->Vapoursynth->Color-

>Basic. In this chapter will be provide a guide on how to use a couple of more advanced filters to improve the final

color quality. Unlike the Basic color filters, the proposed filters are not suitable for all the movies. It is better to check

the impact of the filters on a small clip sample to see if are suitable to be used for the specific movie to colorize.

5.1 Using LUT (Lookup Tables) as post-process filter
LUTs (Lookup Tables) are a kind of post-process color filter that can be used to alter the colors of final clip colored with

HAVC. They apply predetermined sets of mathematical formulas to video’s existing colors to change those colors and

achieve a desired result. They make adjustments to gamma, contrast, saturation, luminance, and hue, essentially taking

the original set of colors and changing them into a new set of colors. And they do so completely automatically. Simply

put, LUT are powerful tools that can be used to elevate the color correction and color grading of HAVC colored clips.

In Hybrid there are already some interesting color LUTs, they can be selected using: Filtering->Vapoursynth->Color-

>Matrix, as shown in the following picture:

The LUT can be applied to the final video already encoded, and

in this case, it is just enough to apply the above settings, where

has been selected the Custom LUT folder. In the field Custom

LUT is possible to select the LUT table to apply (in this example

was selected the LUT named: Presetpro – Hollywood).

If one has already a clear idea of the LUT table to apply, it is

possible to add the LUT mapping as a post-process color filter by

modifying the filter Order/Queue, as shown in the picture on the

right.

It is necessary to verify that the filter TimeCube is located after

the filter DeOldify in the Order/Queue. By using the up and

down arrows shown on the GUI.

42

In the following picture is shown a sample of the effects obtained using the LUTs available in Hybrid:

Some of them are able to change the final color of the image in an interesting way.

In the next chapter will be proposed to use Retinex as pre-process filter, the following picture show the result obtained

using this approach with the reference image already used for the LUT comparison.

 (Retinex + HAVC) (HAVC only)

In this case the difference is similar to the result that could be obtained using LUTs, because the starting luminosity of

the image was good. The differences with dark images are more significant and Retinex could introducing artifacts in

the colored frames.

43

5.2 Using Retinex as pre-process filter
The Retinex filter available in Hybrid is the implementation of the theory of human color vision proposed by Edwin

Land to account for color sensations in real scenes. The basic Retinex theory is that the color of an object is determined

by the ability of the object to reflect light in long (red), medium (green), and short (blue) light, rather than by the

absolute value of the intensity of the reflected light.

The color of the object is not affected by the illumination non-uniformity, and the Retinex filter is based on the

consistency of color perception (color constancy), in this way the Retinex filter can balance dynamic range compression,

edge enhancement and color constancy, so that it can be used successfully as a pre-filter for the color models

implemented in HAVC. Given that the Retinex filter change in significant manner the images it is necessary, after having

used the filter to colorize them, restore the original luminance of the colorized movie. To do that is necessary to

manually change the script. This is a task quite complex and, in this guide, will be provided all the steps necessary to

obtain the correct result.

After having provided the input clip in Hybrid is necessary first to activate the Retinex filter. Before using Retinex is

necessary to remove all the black bars (if are present) as explained at the beginning of this guide. The Retinex filter is

available in Filtering->Vapoursynth->Color->Misc, as shown in the following picture:

After having activated the filter is necessary to activate the HAVC filter as usual, but this time is necessary to disable

the tweaks as shown in the picture below:

In this case tweaks are not more necessary because the Retinex filter is already changing significantly the luma, gamma

and contrast of images.

https://github.com/HomeOfVapourSynthEvolution/VapourSynth-Retinex

44

Then is necessary to select the tab Filter Order/Queue and

change the position of the Retinex filter using the up-down

arrows as shown in the picture on the right. To be used as a

pre-process filter the Retinex filter must be executed before

DeOldify, and its order must be change so that it appears

before the DeOldify filter.

But in this way the original luma, gamma and contrast of the

original clip will not be restored. To restore the luminance

of the images is necessary to manually change the script.

To do that it will be necessary to follow the steps already

described in the chapter regarding Advanced coloring:

• click on preview button.

• select the menu Tools->vsViewer, this will open the

tool vsViewer to show the preview script.

Having opened the script code of the preview file should be visible something like this:

It is possible to see that at row 39 is called the Retinex filter, and at row 43 is called the HAVC functions HAVC_main.

Now is necessary to manually change the script to add at row 37 (1), the following code to save the original clip:
original_YUV = core.resize.Bicubic(clip=clip, format=vs.YUV420P10, matrix_s="709",

range_s="full")

Then at row 50 (2) is necessary to add the code to restore the original luminosity of the clip:

clip = core.std.ShufflePlanes(clips=[original_YUV, clip, clip], planes=[0, 1, 2],

colorfamily=vs.YUV)

The described changes are shown in the following picture:

45

To be able to use the modified script in Hybrid is necessary to uncheck all the filters previously activated so that

Hybrid will contain only the code to preview the clip.

Then is necessary to go at panel: Filtering->Vapoursynth->Custom (see picture below)

and perform the following selections:

1) Select from the drop-down box: End

2) Check the box to allow the editing of code window

3) Paste the code (from row 35 to 55) previously changed (shown in the previous picture)

and insert at the beginning, the code to load the necessary Plugins (path to be adjusted to Hybrid location):
import vsdeoldify as havc

core.std.LoadPlugin(path="D:/Programs/Hybrid/64bit/vsfilters/ColorFilter/Retinex/Retinex.dll")

core.std.LoadPlugin(path="D:/Programs/Hybrid/64bit/vsfilters/MiscFilter/MiscFilters/MiscFilters.dll")

4) Check by pressing the preview button (4) if the code has been properly inserted in Hybrid.

After having pressed the preview button, should be displayed the following Preview window:

46

In the box 1 it is possible to see the function beforeEnd automatically created by Hybrid with the coded previously

inserted, while in the box 2 is possible to see the call to the function beforeEnd so we are certain that the code is

properly inserted and called. Using this custom code will be possible to use Hybrid to encode the clip as explained at

the beginning of this guide.

As stated previously not always Retinex is able to improve the color quality of final image, and it is better to apply it to

a small sample of the video to be colorized to see if the use of Retinex is introducing artifacts instead of improve the

color quality.

In the following pictures are shown some cases where Retinex is introducing artifact in the colored frames. Only the

model DeOldify (with Video network) was able to provide a satisfactory result with Retinex.

47

48

6.0 HAVC Functions reference
In this chapter will be described the most useful functions available in the filter HAVC.

6.1 HAVC_main
This is the main HAVC function, with the support of Presets, it is a wrapper to the more specialized HAVC and it

represents the easier way to use the filter. The header of the function is the following:

HAVC_main(clip: vs.VideoNode, Preset: str = 'medium', ColorModel: str = 'Video+Artistic',

 CombMethod: str = 'Simple', VideoTune: str = 'Stable', ColorFix: str = 'Violet/Red', ColorTune: str = 'Light',

 ColorMap: str = 'None', BlackWhiteTune: str = 'None', EnableDeepEx: bool = False, DeepExMethod: int = 0,

 DeepExPreset: str = 'Medium', DeepExRefMerge: int = 0, DeepExOnlyRefFrames: bool = False,

 ScFrameDir: str = None, ScThreshold: float = 0.10, ScThtOffset: int = 1, ScMinFreq: int = 0,

 ScMinInt: int = 1, ScThtSSIM: float = 0.0, ScNormalize: bool = False, DeepExModel: int = 0,

 DeepExVivid: bool = False, DeepExEncMode: int = 0, DeepExMaxMemFrames=0,

 RefRange: tuple[int, int] = (0, 0), enable_fp16: bool = True, sc_debug: bool = False) -> vs.VideoNode:

Where:

clip: clip to process, only RGB24 format is supported.

Preset: Preset to control the encoding speed/quality. Allowed values are: 'Placebo', 'VerySlow', 'Slower', 'Slow',

'Medium' (default), 'Fast', 'Faster', 'VeryFast'.

ColorModel: Preset to control the Color Models to be used for the color inference. Allowed values are:

'Video+Artistic' (default), 'Stable+Artistic', 'Video+ModelScope', 'Stable+ModelScope', 'Video+ECCV16',

'Artistic+Modelscope', 'Video+Siggraph17', 'DeOldify(Video)', 'DeOldify(Stable)', 'DeOldify(Artistic)',

'DDColor(Artistic)', 'DDColor(ModelScope)', 'Zhang(Siggraph17)', 'Zhang(ECCV16)'.

CombMethod: Method used to combine coloring models with (+): Allowed values are: 'Simple' (default),

'Constrained-Chroma', 'Luma-Masked', 'Adaptive-Luma'.

VideoTune: Preset to control the output video color stability. Allowed values are: 'DeOldify', 'VeryStable',

'MoreStable', 'Stable', 'Balanced', 'Vivid', ‘MoreVivid', 'VeryVivid', 'DDColor'.

ColorFix: This parameter allows to reduce color noise on specific chroma ranges. Allowed values are: 'None',

'Magenta', 'Magenta/Violet', 'Violet', 'Violet/Red' (default), 'Blue/Magenta', 'Yellow', 'Yellow/Orange', 'Yellow/Green'.

ColorTune: This parameter allows to define the intensity of noise reduction applied by ColorFix. Allowed values are:

‘None’, 'Light' (default), 'Medium', 'Strong'.

ColorMap: This parameter allows to change a given color range to another color. Allowed values are: 'None' (default),

'Blue->Brown', 'Blue->Red', 'Blue->Green', 'Green->Brown', 'Green->Red', 'Green->Blue', 'Red->Brown', 'Red->Blue',

'Yellow->Rose'.

BlackWhiteTune: This parameter allows to improve contrast and luminosity of Black & White input clip to

be colored with HAVC. Allowed values are: 'None' (default), 'Light', 'Medium', 'Strong'.

EnableDeepEx: Enable coloring using Exemplar-based Video Colorization models.

https://github.com/dan64/vs-deoldify/tree/main/vsdeoldify

49

DeepExMethod: Method to use to generate reference frames. Allowed values are: 0 = HAVC same as video (default),

1 = HAVC + RF same as video, 2 = HAVC + RF different from video, 3 = external RF same as video, 4 = external RF

different from video, 5 = external ClipRef same as video, 6 = external ClipRef different from video.

DeepExPreset: Preset to control the render method and speed. Allowed values are: 'Fast' (colors are more washed

out), 'Medium' (colors are a little washed out), 'Slow' (colors are a little more vivid).

DeepExRefMerge: Method used by DeepEx to merge the reference frames with the frames propagated by DeepEx.

It is applicable only with DeepEx method: 0, 1, 2. Allowed values are: 0 = No RF merge (reference frames can be

produced with any frequency), 1 = RF-Merge VeryLow (reference frames are merged with weight=0.3), 2 = RF-Merge

Low (reference frames are merged with weight=0.4), 3 = RF-Merge Med. (reference frames are merged with medium

weight=0.5), 4 = RF-Merge High (reference frames are merged with weight=0.6), 5 = RF-Merge VeryHigh (reference

frames are merged with weight=0.7).

DeepExOnlyRefFrames: If enabled the filter will output in ScFrameDir the reference frames. Useful to check and

eventually correct the frames with wrong colors (can be used only if DeepExMethod = 0).

DeepExModel: Exemplar Model used by DeepEx to propagate color frames. Allowed values are: 0: ColorMNet

(default), 1: Deep-Exemplar, 2 : Deep-Remaster.

DeepExVivid: Depending on selected DeepExModel, if enabled (True): (0) ColorMNet: the frames memory is reset at

every reference frame update, (1) Deep-Exemplar: the saturation will be increased by about 25%. (2) Deep-Remaster:

the saturation will be increased by about 20% and Hue by +10. Range [True, False].

DeepExEncMode: Parameter used by ColorMNet to define the encode mode strategy. Available values are:

 0: remote encoding. The frames will be colored by a thread outside Vapoursynth.

 This option doesn’t have any GPU memory limitation and will allow to fully use the long-term

 frame memory. It is the faster encode method (default)

 1: local encoding. The frames will be colored inside the Vapoursynth environment.

 In this case the max_memory will be limited by the size of GPU memory (max 15 frames for

 24GB GPU). Useful for coloring clips with a lot of smooth transitions, since in this case is better

 to use a short frame memory or the Deep-Exemplar model, which is faster.

 2: remote all-ref. Same as "remote encoding" but all the available reference frames

 will be used for the inference at the beginning of encoding.

DeepExMaxMemFrames: Parameter used by ColorMNet/DeepRemaster models.

 For ColorMNet specify the max number of encoded frames to keep in memory. Its value

 depends on encode mode and must be defined manually following the suggested values.

 DeepExEncMode =0: there is no memory limit (it could be all the frames in the clip).

 Suggested values are: min=150, max=10000

 If = 0 will be filled with the value of 10000 or the clip length if lower.

 DeepExEncMode =1: the max memory frames are limited by available GPU memory.

 Suggested values are:

50

 min=1, max=4: for 8GB GPU

 min=1, max=8: for 12GB GPU

 min=1, max=15: for 24GB GPU

 If = 0 will be filled with the max value (depending on total GPU RAM available).

 For DeepRemaster represent the number to reference frames to keep in memory.

 Suggested values are:

 min=4, max=50

 If = 0 will be filled with the value of 20.

ScFrameDir: if set, define the directory where are stored the reference frames that will be used by Exemplar-based

Video Colorization models. With DeepExMethod 5,6 this parameter can be the path to a video clip.

ScThreshold: Scene changes threshold used to generate the reference frames to be used by Exemplar-based Video

Colorization. It is a percentage of the luma change between the previous and the current frame. Range [0-1], default

0.10. If =0 the reference frames are not generated.

ScThtOffset: Offset index used for the Scene change detection. The comparison will be performed, between frame[n]

and frame[n-offset]. An offset > 1 is useful to detect blended scene change. Range [1, 25]. Default = 1.

ScMinInt: Minimum number of frame interval between scene changes, Range [1, 25]. Default = 1.

ScMinFreq: if > 0 will be generated at least a reference frame every ScMinFreq frames. Range [0-1500], default: 0.

ScThtSSIM: Threshold used by the SSIM (Structural Similarity Index Metric) selection filter. If > 0, will be activated a

filter that will improve the scene-change detection, by discarding images that are similar. Suggested values are

between 0.35 and 0.75. Range [0-1], default 0.0 (deactivated).

ScNormalize: If true the B&W frames are normalized before scene detection. The normalization will increase the

sensitivity to smooth scene changes. Range [True, False], default: True.

RefRange: Parameter used only with DeepExMethod in (5, 6). With this parameter it is possible to

provide the frame number of clip start and end. For example RefRange = (100, 500) will return the clip's slice:

clip[100:500], if RefRange=(0, 0) will be considered all clip's frames.

enable_fp16: Enable/disable FP16 in DDcolor inference. Range [True, False], default: True.

sc_debug: Print debug messages regarding the scene change detection process.

51

6.2 HAVC_deepex
This is the HAVC function that perform the color inference using the exemplar-based models: ColorMNet, Deep-

Exemplar. Some of parameters in input are accepting lists in order to minimize the number of parameters managed

by Hybrid. The header of the function is the following:

HAVC_deepex(clip: vs.VideoNode = None, clip_ref: vs.VideoNode = None, method: int = 0,

 render_speed: str = 'medium', render_vivid: bool = True, ref_merge: int = 0, sc_framedir: str = None,

 ref_norm: bool = False, only_ref_frames: bool = False, dark: bool = False, dark_p: list = (0.2, 0.8),

 smooth: bool = False, smooth_p: list = (0.3, 0.7, 0.9, 0.0, "none"), colormap: str = "none",

 ref_weight: float = None, ref_thresh: float = None, ref_freq: int = None, ex_model: int = 0,

 encode_mode: int = 0, max_memory_frames: int = 0, torch_dir: str = model_dir) -> vs.VideoNode:

Where:

clip: Clip to process. Only RGB24 format is supported

clip_ref: Clip containing the reference frames, it is necessary if method in (0,1,2,5,6).

method: Method to use to generate reference frames (RF). Allowed values are: 0 = HAVC same as video (default), 1 =

HAVC + RF same as video, 2 = HAVC + RF different from video, 3 = external RF same as video, 4 = external RF different

from video, 5 = external ClipRef same as video, 6 = external ClipRef different from video.

render_speed: Preset to control the render method and speed. Allowed values are: 'Fast' (colors are more washed

out), 'Medium' (colors are a little washed out), 'Slow' (colors are a little more vivid).

render_vivid Depending on selected ex_model, if enabled (True): (0) ColorMNet: the frames memory is reset at every

reference frame update, (1) Deep-Exemplar: the saturation will be increased by about 25%. (2) Deep-Remaster: the

saturation will be increased by about 20% and Hue by +10. Range [True, False].

ref_merge Method used by DeepEx to merge the reference frames with the frames propagated by DeepEx.

It is applicable only with DeepEx method: 0, 1, 2. Allowed values are: 0 = No RF merge (reference frames can be

produced with any frequency), 1 = RF-Merge VeryLow (reference frames are merged with weight=0.3), 2 = RF-Merge

Low (reference frames are merged with weight=0.4), 3 = RF-Merge Med. (reference frames are merged with medium

weight=0.5), 4 = RF-Merge High (reference frames are merged with weight=0.6), 5 = RF-Merge VeryHigh (reference

frames are merged with weight=0.7).

ref_weight: If (ref_merge > 0), represent the weight used to merge the reference frames. If is not set, is assigned

automatically a value depending on ref_merge value.

ref_thresh: Represent the threshold used to create the reference frames. If is not set, is assigned automatically a

value of 0.10.

ref_freq: If > 0 will be generated at least a reference frame every "ref_freq" frames. range [0-1500]. If is not set, is

assigned automatically a value depending on ref_merge/method values.

ref_norm: If true the B&W frames are normalized before apply the Scene Detection to generate the reference

frames. The normalization will increase the sensitivity to smooth scene changes, range [True, False], default: False

sc_framedir: If set, define the directory where are stored the reference frames. If only_ref_frames=True, and

method=0 this directory will be written with the reference frames used by the filter. If method!=0 the directory will

be read to create the reference frames that will be used by Exemplar-based Video Colorization. The reference frame

52

name must be in the format: ref_nnnnnn.[jpg | png], for example the reference frame 897 must be named:

ref_000897.jpg or ref_000897.png. With method 5,6 this parameter can be the path to a video clip.

only_ref_frames: If enabled the filter will output in sc_framedir the reference frames. Useful to check and eventually

correct the frames with wrong colors.

dark: Enable/disable darkness filter (only on ref-frames). Range [True, False]

dark_p: List of parameters for darken the clip's dark portions, which sometimes are wrongly colored by the color

models, the positional parameters in the list are the following:

 [0]: dark_threshold, luma threshold to select the dark area, range [0.1-0.5] (0.01=1%)

 [1]: dark_amount: amount of desaturation to apply to the dark area, range [0-1]

 [2]: chroma_range (optional), if="none" is disabled, otherwise the filter desaturation will be applied only

 on the region defined in the chroma range with the requested syntax.

smooth: Enable/disable chroma smoothing (only on ref-frames). Range [True, False]

smooth_p: List of parameters to adjust the saturation and "vibrancy" of the clip, the positional parameters in the list

are the following:

 [0]: dark_threshold, luma threshold to select the dark area. Range [0-1] (0.01=1%)

 [1]: white_threshold, if > dark_threshold will be applied a gradient till white_threshold, range [0-1] (0.01=1%)

 [2]: dark_sat, amount of de-saturation to apply to the dark area. Range [0-1]

 [3]: dark_bright, darkness parameter it used to reduce the "V" component in "HSV" color-space. Range [0, 1]

 [4]: chroma_range (optional), if="none" is disabled, otherwise the filter desaturation will be applied only on

 the region defined in the chroma range with the requested syntax.

colormap: Direct hue/color mapping (only on ref-frames), without luma filtering, using the "chroma adjustment"

parameter, if="none" is disabled.

ex_model: Exemplar-based model to use for the color propagation of reference images, available models are: 0 =

ColorMNet (default), 1 = Deep-Exemplar, 2 : Deep-Remaster.

encode_mode: Parameter used by ColorMNet to define the encode mode strategy. Available values are:

 0: remote encoding. The frames will be colored by a thread outside Vapoursynth.

 This option doesn’t have any GPU memory limitation and will allow to fully use the long-term

 frame memory. It is the faster encode method (default)

 1: local encoding. The frames will be colored inside the Vapoursynth environment.

 In this case the max_memory will be limited by the size of GPU memory (max 15 frames for

 24GB GPU). Useful for coloring clips with a lot of smooth transitions, since in this case is better

 to use a short frame memory or the Deep-Exemplar model, which is faster.

 2: remote all-ref. Same as "remote encoding" but all the available reference frames

 will be used for the inference at the beginning of encoding.

53

max_memory_frames: Parameter used by ColorMNet/DeepRemaster models.

 For ColorMNet specify the max number of encoded frames to keep in memory. Its value

 depends on encode mode and must be defined manually following the suggested values.

 encode_mode =0: there is no memory limit (it could be all the frames in the clip).

 Suggested values are: min=150, max=10000

 If = 0 will be filled with the value of 10000 or the clip length if lower.

 encode_mode =1: the max memory frames are limited by available GPU memory.

 Suggested values are:

 min=1, max=4: for 8GB GPU

 min=1, max=8: for 12GB GPU

 min=1, max=15: for 24GB GPU

 If = 0 will be filled with the max value (depending on total GPU RAM available).

 For DeepRemaster represent the number to reference frames to keep in memory.

 Suggested values are:

 min=4, max=50

 If = 0 will be filled with the value of 20.

torch_dir: torch hub directory location, default is model directory, if set to None will switch to torch cache dir.

54

6.3 HAVC_colorizer
This is the HAVC function that perform the color inference using the single frame-based models: DeOldify, DDColor

and Zhang models. Some of parameters in input are accepting lists in order to minimize the number of parameters

managed by Hybrid. The header of the function is the following:

HAVC_colorizer(clip: vs.VideoNode, method: int = 2, mweight: float = 0.4, deoldify_p: list = (0, 24, 1.0, 0.0),

ddcolor_p: list = (1, 24, 1.0, 0.0, True), ddtweak: bool = False, ddtweak_p: list = (0.0, 1.0, 2.5, True, 0.3, 0.6, 1.5, 0.5,

"300:360|0.8,0.1"), cmc_tresh: float = 0.2, lmm_p: list = (0.2, 0.8, 1.0), alm_p: list = (0.8, 1.0, 0.15), cmb_sw: bool =

False, sc_threshold: float = 0.0, sc_tht_offset: int = 1, sc_min_freq: int = 0, sc_tht_ssim: float = 0.0, sc_normalize:

bool = True, sc_min_int: int = 1, sc_tht_white: float = DEF_THT_WHITE, sc_tht_black: float = DEF_THT_BLACK,

device_index: int = 0, torch_dir: str = model_dir, sc_debug: bool = False) -> vs.VideoNode:

Where:

clip: clip to process, only RGB24 format is supported

method: method used to combine DeOldify with DDColor (default = 2):

 0: DeOldify only (no merge)

 1: DDcolor only (no merge)

 2: Simple Merge (default):

 the frames are combined using a weighted merge, where the parameter mweight represent the

 weight assigned to the colors provided by the DDColor frames. With this method is suggested

 a starting weight < 50% (ex. = 40%).

 3: Constrained Chroma Merge:

 given that the colors provided by DeOldify are more conservative and stable than the colors obtained

 with DDcolor. The frames are combined by assigning a limit to the amount of difference in chroma

 values between DeOldify and DDcolor this limit is defined by the threshold parameter cmc_tresh.

 The limit is applied to the image converted to "YUV". For example, when cmc_tresh=0.2, the chroma

 values "U","V" of DDcolor frame will be constrained to have an absolute percentage difference respect

 to "U","V" provided by DeOldify not higher than 20%. The final limited frame will be merged again with

 the DeOldify frame. With this method is suggested a starting weight > 50% (ex. = 60%).

 4: Luma Masked Merge:

 the frames are combined using a masked merge, the pixels of DDcolor with luma < luma_mask_limit

 will be filled with the pixels of DeOldify. If luma_white_limit > luma_mask_limit the mask will apply

 a gradient till luma_white_limit. If the parameter mweight > 0 the final masked frame will be merged

 again, with the DeOldify frame. With this method is suggested a starting weight > 60% (ex. = 70%).

 5: Adaptive Luma Merge:

 given that the DDcolor performance is quite bad on dark scenes, the images are combined by

 decreasing the weight assigned to DDcolor when the luma is below a given threshold given

55

 by: luma_threshold. The weight is calculated using the formula:

 merge_weight = MAX(mweight * (luma/luma_threshold)^alpha, min_weight).

 For example, with: luma_threshold = 0.6 and alpha = 1, the weight assigned to DDColor will start

 to decrease linearly when the luma < 60% till min_weight. For alpha=2, begins to decrease

 quadratically (because luma/luma_threshold < 1). With this method is suggested a starting

 weight > 70% (ex. = 80%).

 The methods 3 and 4 are similar to Simple Merge, but before the merge with DeOldify the DDcolor

 frame is limited in the chroma changes (method 3) or limited based on the luma (method 4).

 The method 5 is a Simple Merge where the weight decrease with luma.

mweight: weight given to DDcolor clip in all merge methods, range [0-1] (0.01=1%), the final frame is obtained

 performing the following weighted sum: f_out = f_deoldify*(1-mweight) + mweight*f_ddcolor

deoldify_p: List of parameters for the DeOldify color inference:

 [0] DeOldify-model to use (default = 0):

 0 = ColorizeVideo_gen

 1 = ColorizeStable_gen

 2 = ColorizeArtistic_gen

 [1] render-factor for the model. Range: 10-44 (default = 24).

 [2] saturation parameter to apply to DeOldify color model (default = 1)

 [3] hue parameter to apply to DeOldify color model (default = 0)

ddcolor_p: List of parameters for DDcolor inference:

 [0] DDColor-model to use (default = 1):

 0 = ddcolor_modelscope,

 1 = ddcolor_artistic

 2 = colorization_siggraph17

 3 = colorization_eccv16

 [1] render-factor for the model, if=0 will be auto selected (default = 24). Range: [0, 10-64]

 [2] saturation parameter to apply to DDcolor model (default = 1)

 [3] hue parameter to apply to DDcolor model (default = 0)

 [4] FP16: enable/disable FP16 in DDcolor inference

ddtweak: enabled/disable tweak parameters for DDcolor. Range [True, False]

ddtweak_p: List of DDcolor tweak parameters:

 [0]: bright (default = 0)

56

 [1]: contrast (default = 1), if < 1 DDcolor provides de-saturated frames

 [2]: gamma tweak for DDcolor (default = 1)

 [3]: luma_constrained_gamma: luma constrained gamma correction enabled (default = False).

 Range: [True, False]. When enabled the average luma of a video clip will be forced to don't be below

 the value defined by the parameter luma_min. The function allows to modify the gamma (g) of

 the clip if the average luma is below the parameter gamma_luma_min.

 A gamma (g) value > 2.0 improves the DDcolor stability on bright scenes, while a gamma (g) < 1

 improves the DDcolor stability on dark scenes.

 The decrease of the gamma with luma is activated using a gamma_alpha!= 0.

 [4]: luma_min: luma (%) min value for tweak activation (default = 0.2), if=0 is not activated, range [0-1]

 [5]: gamma_luma_min: luma (%) min value for gamma tweak activation (default = 0.5), if=0 is not

 Activated. Range [0-1]

 [6]: gamma_alpha: the gamma (g) will decrease with the luma using the following expression:

 g = MAX(gamma * pow(luma/gamma_luma_min, gamma_alpha), gamma_min),

 for a movie with a lot of dark scenes is suggested alpha > 1, if=0 is not activated. Range [>=0]

 [7]: gamma_min: minimum value for gamma. Range (default=0.5) [>0.1]

 [8]: chroma_adjustment (optional), if="none" is disabled, otherwise will be applied the specified

 chroma adjustment defined with the requested syntax.

cmc_tresh: chroma threshold (%), used by Constrained Chroma Merge (see method=3 for a full explanation).

 Range [0-1] (0.01=1%)

lmm_p: List of parameters for method: Luma Masked Merge (see method=4 for a full explanation)

 [0]: luma_mask_limit: luma limit for build the mask used in Luma Masked Merge. Range [0-1] (0.01=1%)

 [1]: luma_white_limit: the mask will apply a gradient till luma_white_limit. Range [0-1] (0.01=1%)

 [2]: luma_mask_sat: if < 1 the DDcolor dark pixels will be substituted with the desaturated DeOldify

 Pixels. Range [0-1] (0.01=1%)

alm_p: List of parameters for method: Adaptive Luma Merge (see method=5 for a full explanation)

 [0]: luma_threshold: threshold for the gradient merge, range [0-1] (0.01=1%)

 [1]: alpha: exponent parameter used for the weight calculation. Range [>0]

 [2]: min_weight: min merge weight. Range [0-1] (0.01=1%)

cmb_sw: if true switch the clip order in all the combining methods. Range [True, False]

sc_threshold: Scene changes threshold used to generate the reference frames to be used by Exemplar-based

 Video Colorization. It is a percentage of the luma change between the previous and the current frame.

57

 Range [0-1], default 0.0. If =0 the reference frames are not generated and will be colorized all the

 frames.

sc_tht_offset: Offset index used for the Scene change detection. The comparison will be performed, between

 frame[n] and frame[n-offset]. An offset > 1 is useful to detect blended scene change. Range [1, 25].

 Default = 1.

sc_tht_ssim: Threshold used by the SSIM (Structural Similarity Index Metric) selection filter. If > 0, will be activated

 a filter that will improve the scene-change detection, by discarding images that are similar.

 Suggested values are between 0.35 and 0.85. Range [0-1], default 0.0 (deactivated).

sc_normalize: If true the B&W frames are normalized before scene detection. The normalization will increase the

 sensitivity to smooth scene changes. Range [True, False], default: True.

sc_min_int: Minimum number of frame interval between scene changes. Range [1, 25]. Default = 1.

sc_min_freq: If > 0 will be generate at least a reference frame every sc_min_freq frames.

 Range [0-1500], default: 0.

sc_tht_white: Threshold to identify white frames. Range [0-1], default 0.88.

sc_tht_black: Threshold to identify dark frames. Range [0-1], default 0.12.

device_index: device ordinal of the GPU, choices: GPU0...GPU7, CPU=99 (default = 0)

torch_dir: torch hub directory location, default is model directory, if set to None will switch to torch cache dir.

sc_debug: Print debug messages regarding the scene change detection process.

58

6.4 HAVC_stabilizer
This is the HAVC function that allows to apply to the input clip the color stabilization filters, which can be applied to

stabilize the chroma components in colored clips. Some of parameters in input are accepting lists in order to

minimize the number of parameters managed by Hybrid. The header of the function is the following:

HAVC_stabilizer(clip: vs.VideoNode, dark: bool = False, dark_p: list = (0.2, 0.8), smooth: bool = False,

 smooth_p: list = (0.3, 0.7, 0.9, 0.0, "none"), stab: bool = False, stab_p: list = (5, 'A', 1, 15, 0.2, 0.8),

 colormap: str = "none", render_factor: int = 24) -> vs.VideoNode:

Where:

clip: clip to process, only RGB24 format is supported.

dark: enable/disable darkness filter. Range [True, False]

dark_p: List of parameters for darken the clip's dark portions, which sometimes are wrongly colored by

 the color models:

 [0]: dark_threshold, luma threshold to select the dark area. Range [0.1-0.5] (0.01=1%), default = 0.2

 [1]: dark_amount: amount of desaturation to apply to the dark area. Range [0-1], where a value of 0

 will not apply any desaturation, default = 0.8

 [2]: chroma_range (optional), if="none" is disabled, otherwise the filter desaturation will be applied

 only on the region defined in the chroma range with the requested syntax.

smooth: enable/disable chroma smoothing. Range [True, False]

smooth_p: List of parameters to adjust the saturation and "vibrancy" of the clip.

 [0]: dark_threshold, luma threshold to select the dark area, range [0-1] (0.01=1%)

 [1]: white_threshold, if > dark_threshold will be applied a gradient till white_threshold, range [0-1] (0.01=1%)

 [2]: dark_sat, amount of de-saturation to apply to the dark area. Range [0-1]

 [3]: dark_bright, darkness parameter it used to reduce the "V" component in "HSV" color-space. Range [0, 1]

 [4]: chroma_range (optional), if="none" is disabled, otherwise the filter desaturation will be applied only on

 The region defined in the chroma range with the requested syntax.

stab: enable/disable chroma stabilizer. Range [True, False]

stab_p: List of parameters for the temporal color stabilizer:

 [0]: nframes, number of frames to be used in the stabilizer. Range [3-15]

 [1]: mode, type of average used by the stabilizer. Range ['A'='arithmetic', 'W'='weighted']

 [2]: sat: saturation applied to the restored gray pixels. Range [0,1]

 [3]: tht, threshold to detect gray pixels. Range [0,255], if=0 is not applied the restore.

 its value depends on merge method used; suggested values are:

 method 0: tht = 5

59

 method 1: tht = 60 (DDcolor provides very saturated frames)

 method 2: tht = 15

 method 3: tht = 20

 method 4: tht = 5

 method 5: tht = 10

 [4]: weight, weight to blend the restored image (default=0.2), range [0-1], if=0 is not applied the blending

 [5]: tht_scen, threshold for scene change detection (default = 0.8), if=0 is not activated, range [0.01-0.50]

 [6]: chroma_adjustment (optional), if="none" is disabled, otherwise will be applied the specified

 chroma adjustment defined with the requested syntax.

colormap: direct hue/color mapping, without luma filtering, using the color mapping syntax, if="none"

 is disabled.

render_factor: render_factor to apply to the filters, the frame size will be reduced to speed-up the filters,

 but the final resolution will be the one of the original clip. If = 0 will be auto selected.

 This approach takes advantage of the fact that human eyes are much less sensitive to

 imperfections in chrominance compared to luminance. This means that it is possible to speed-up

 the chroma filters and ultimately get a great high-resolution result. Range: [0, 10-64]

60

6.5 HAVC_read_video
This is a utility HAVC function used to read a movie to be used as input for the function HAVC_restore_video, The clip

provided in output will be already in RGB24 format. The header of the function is the following:

HAVC_read_video(source: str, fpsnum: int = 0, fpsden: int = 1) -> vs.VideoNode:

 Where:

source: Full path to the video to read

fpsnum: FPS numerator, for using it in HAVC, must be provided the same value of clip to be colored: clip.fps_num

fpsden: FPS denominator, for using it in HAVC, must be provided the same value of clip to be colored: clip.fps_den

61

6.6 HAVC_restore_video
This is the HAVC function used to colorize a movie using a video clip as source of reference images. Usually, the

reference clip to provide in input is obtained by a previous call to the function HAVC_read_video. The header of the

function is the following:

HAVC_restore_video(clip: vs.VideoNode = None, clip_ref: vs.VideoNode = None, method: int = 6,

 render_speed: str = 'medium', ex_model: int = 0, ref_merge: int = 0, ref_weight: float = None,

 ref_thresh: float = None, ref_freq: int = None, ref_norm: bool = False, max_memory_frames: int = 0,

 render_vivid: bool = False, encode_mode: int = 2, torch_dir: str = model_dir) -> vs.VideoNode:

Where:

 clip: Clip to process. Only RGB24 format is supported

clip_ref: Clip containing the reference frames, it is necessary if method in (0,1,2,5,6).

method: Method to use to generate reference frames (RF). Allowed values are: 0 = HAVC same as video (default), 1 =

HAVC + RF same as video, 2 = HAVC + RF different from video, 3 = external RF same as video, 4 = external RF different

from video, 5 = external ClipRef same as video, 6 = external ClipRef different from video.

render_speed: Preset to control the render method and speed. Allowed values are: 'Fast' (colors are more washed

out), 'Medium' (colors are a little washed out), 'Slow' (colors are a little more vivid).

render_vivid Depending on selected ex_model, if enabled (True): (0) ColorMNet: the frames memory is reset at every

reference frame update, (1) Deep-Exemplar: the saturation will be increased by about 25%. (2) Deep-Remaster: the

saturation will be increased by about 20% and Hue by +10. Range [True, False].

ref_merge Method used by DeepEx to merge the reference frames with the frames propagated by DeepEx.

It is applicable only with DeepEx method: 0, 1, 2. Allowed values are: 0 = No RF merge (reference frames can be

produced with any frequency), 1 = RF-Merge VeryLow (reference frames are merged with weight=0.3), 2 = RF-Merge

Low (reference frames are merged with weight=0.4), 3 = RF-Merge Med. (reference frames are merged with medium

weight=0.5), 4 = RF-Merge High (reference frames are merged with weight=0.6), 5 = RF-Merge VeryHigh (reference

frames are merged with weight=0.7).

ref_weight: If (ref_merge > 0), represent the weight used to merge the reference frames. If is not set, is assigned

automatically a value depending on ref_merge value.

ref_thresh: Represent the threshold used to create the reference frames. If is not set, is assigned automatically a

value of 0.10.

ref_freq: If > 0 will be generated at least a reference frame every "ref_freq" frames. range [0-1500]. If is not set, is

assigned automatically a value depending on ref_merge/method values.

ref_norm: If true the B&W frames are normalized before apply the Scene Detection to generate the reference

frames. The normalization will increase the sensitivity to smooth scene changes, range [True, False], default: False

ex_model: Exemplar-based model to use for the color propagation of reference images, available models are: 0 =

ColorMNet (default), 1 = Deep-Exemplar, 2 = Deep-Remaster.

encode_mode: Parameter used by ColorMNet to define the encode mode strategy. Available values are:

 0: remote encoding. The frames will be colored by a thread outside Vapoursynth.

62

 This option doesn’t have any GPU memory limitation and will allow to fully use the long-term

 frame memory. It is the faster encode method (default)

 1: local encoding. The frames will be colored inside the Vapoursynth environment.

 In this case the max_memory will be limited by the size of GPU memory (max 15 frames for

 24GB GPU). Useful for coloring clips with a lot of smooth transitions, since in this case is better

 to use a short frame memory or the Deep-Exemplar model, which is faster.

 2: remote all-ref. Same as "remote encoding" but all the available reference frames

 will be used for the inference at the beginning of encoding.

max_memory_frames: Parameter used by ColorMNet/DeepRemaster models.

 For ColorMNet specify the max number of encoded frames to keep in memory. Its value

 depends on encode mode and must be defined manually following the suggested values.

 encode_mode =0: there is no memory limit (it could be all the frames in the clip).

 Suggested values are: min=150, max=10000

 If = 0 will be filled with the value of 10000 or the clip length if lower.

 encode_mode =1: the max memory frames are limited by available GPU memory.

 Suggested values are:

 min=1, max=4: for 8GB GPU

 min=1, max=8: for 12GB GPU

 min=1, max=15: for 24GB GPU

 If = 0 will be filled with the max value (depending on total GPU RAM available).

 For DeepRemaster represent the number to reference frames to keep in memory.

 Suggested values are:

 min=4, max=50

 If = 0 will be filled with the value of 20.

torch_dir: torch hub directory location, default is model directory, if set to None will switch to torch cache dir.

63

6.7 HAVC_SceneDetect
This is the HAVC function to set the scene-change frames in the clip. When is detected a scene change, the frame

property '_SceneChangePrev' is set = 1 and '_SceneChangeNext' is set = 0. The header of the function is the

following:

HAVC_SceneDetect(clip: vs.VideoNode, sc_threshold: float = DEF_THRESHOLD, sc_tht_offset: int = 1,

 sc_tht_ssim: float = 0.0, sc_min_int: int = 1, sc_min_freq: int = 0, sc_normalize: bool = True,

 sc_tht_white: float = DEF_THT_WHITE, sc_tht_black: float = DEF_THT_BLACK,

 sc_debug: bool = False) -> vs.VideoNode:

Where:

clip: clip to process, only RGB24 format is supported.

sc_threshold: Scene changes threshold used to generate the reference frames.

 It is a percentage of the luma change between the previous n-frame (n=sc_the_offset)

 and the current frame. range [0-1], default 0.10.

sc_tht_offset: Offset index used for the Scene change detection. The comparison will be performed,

 between frame[n] and frame[n-sc_tht_offset]. An sc_tht_offset > 1 is useful to detect blended scene

 change. Range [1, 25], default = 1.

sc_normalize: If true the B&W frames are normalized before apply scene detection filter, the normalization will

 increase the sensitivity to smooth scene changes.

sc_tht_white: Threshold to identify white frames, range [0-1], default 0.88.

sc_tht_black: Threshold to identify dark frames, range [0-1], default 0.12.

sc_tht_ssim: Threshold used by the SSIM (Structural Similarity Index Metric) selection filter.

 If > 0, will be activated a filter that will improve the scene-change detection,

 by discarding images that are similar.

 Suggested values are between 0.35 and 0.85. Range [0-1], default = 0.0 (deactivated)

sc_min_int: Minimum number of frame interval between scene changes. Range [1, 25], default = 1.

sc_min_freq: If > 0 will be generated at least a reference frame every sc_min_freq frames.

 Range [0-1500], default = 0.

sc_debug: If True will enable scene changes debug messages. Range [True, False], default = False

64

6.8 HAVC_extract_reference_frames
This is an HAVC utility function that perform Scene change detection and the export the reference frames. The

header of the function is the following:

HAVC_extract_reference_frames(clip: vs.VideoNode, sc_threshold: float = DEF_THRESHOLD, sc_tht_offset: int = 1,

 sc_tht_ssim: float = 0.0, sc_min_int: int = 1, sc_min_freq: int = 0, sc_framedir: str = "./",

 sc_normalize: bool = True, ref_offset: int = 0, sc_tht_white: float = DEF_THT_WHITE,

 sc_tht_black: float = DEF_THT_BLACK, ref_ext: str = "jpg", ref_jpg_quality: int = DEF_JPG_QUALITY,

 ref_override: bool = True, sc_debug: bool = False) -> vs.VideoNode:

Where:

clip: clip to process, only RGB24 format is supported.

sc_threshold: Scene changes threshold used to generate the reference frames.

 It is a percentage of the luma change between the previous n-frame (n=sc_the_offset)

 and the current frame. range [0-1], default 0.10.

sc_tht_offset: Offset index used for the Scene change detection. The comparison will be performed,

 between frame[n] and frame[n-sc_tht_offset]. An sc_tht_offset > 1 is useful to detect blended scene

 change. Range [1, 25], default = 1.

sc_normalize: If true the B&W frames are normalized before apply scene detection filter, the normalization will

 increase the sensitivity to smooth scene changes.

sc_tht_white: Threshold to identify white frames, range [0-1], default 0.88.

sc_tht_black: Threshold to identify dark frames, range [0-1], default 0.12.

sc_tht_ssim: Threshold used by the SSIM (Structural Similarity Index Metric) selection filter.

 If > 0, will be activated a filter that will improve the scene-change detection,

 by discarding images that are similar.

 Suggested values are between 0.35 and 0.85. Range [0-1], default = 0.0 (deactivated)

sc_min_int: Minimum number of frame interval between scene changes. Range [1, 25], default = 1.

sc_min_freq: If > 0 will be generated at least a reference frame every sc_min_freq frames.

 Range [0-1500], default = 0.

sc_framedir: If set, define the directory where are stored the reference frames.

 The reference frames are named as: ref_nnnnnn.[jpg | png].], for example the reference frame 897

 must be named: ref_000897.jpg or ref_000897.png.

ref_offset: Offset number that will be added to the number of generated frames, default = 0.

ref_ext: File extension and format of saved frames. Range ["jpg", "png"] , default = "jpg"

65

ref_jpg_quality: Quality of jpg compression. Range [0, 100], default = 95

ref_override: If True, the reference frames with the same name will be overridden, otherwise will

 be discarded. Range [True, False], default = True

sc_debug: If True will enable scene changes debug messages. Range [True, False], default = False

66

6.9 HAVC_export_reference_frames
This is an HAVC utility function that export the reference frames of a clip. The clip must have the frame property

'_SceneChangePrev' and '_SceneChangeNext' set. The header of the function is the following:

HAVC_export_reference_frames(clip: vs.VideoNode, sc_framedir: str = "./", ref_offset: int = 0,

 ref_ext: str = "jpg", ref_jpg_quality: int = DEF_JPG_QUALITY, ref_override: bool = True) -> vs.VideoNode:

Where:

clip: clip to process, only RGB24 format is supported.

sc_framedir: If set, define the directory where are stored the reference frames.

 The reference frames are named as: ref_nnnnnn.[jpg | png].], for example the reference frame 897

 must be named: ref_000897.jpg or ref_000897.png.

ref_offset: Offset number that will be added to the number of generated frames, default = 0.

ref_ext: File extension and format of saved frames. Range ["jpg", "png"] , default = "jpg"

ref_jpg_quality: Quality of jpg compression. Range [0, 100], default = 95

ref_override: If True, the reference frames with the same name will be overridden, otherwise will

 be discarded. Range [True, False], default = True

67

6.10 HAVC_bw_tune
Pre/post - process filter for improving contrast and luminosity of clips to be colored with HAVC.

HAVC_bw_tune(clip: vs.VideoNode = None, bw_tune: str = 'none', action: str = None,

 hue: float = 0, sat: float = 1, bright: float = 0, cont: float = 1) -> vs.VideoNode

Where:

clip: Clip to process. Only RGB24 format is supported.

bw_tune: This parameter allows to improve contrast and luminosity of input clip to

 be colored with HAVC. Allowed values are:

 'None' (default)

 'Light',

 'Medium',

 'Strong'

 'Custom' (it allows to adjust: hue, saturation, brightness, contrast)

action: This parameter allows to apply the improvement to input clip and to revert the adjustments.

 Allowed values are:

 'ON': the adjustments are applied on the input clip

 'OFF', the adjustments previous applied are almost reverted

 None, allowed only for bw_tune = 'Custom'

Parameters available only with bw_tune = ‘Custom’ mode:

hue: Adjust the color hue of the image. hue>0.0 shifts the image towards red. hue<0.0 shifts the image towards

 green. Range -180.0 to +180.0, default = 0.0

sat: Adjust the color saturation of the image by controlling gain of the color channels. sat>1.0 increases the

 saturation. sat<1.0 reduces the saturation. Use sat=0 to convert to GreyScale. Range 0.0 to 10.0, default = 1.0

bright: Change the brightness of the image by applying a constant bias to the luma channel. bright>0.0 increases the

 brightness. bright<0.0 decreases the brightness. Range -255.0 to 255.0, default = 0.0

cont: Change the contrast of the image by multiplying the luma values by a constant. cont>1.0 increase the contrast

 (the luma range will be stretched). cont<1.0 decrease the contrast (the luma range will be contracted).

 Range 0.0 to 10.0, default = 1.0.

68

6.11 HAVC_merge
Utility function with the implementation of HAVC merge methods.

HAVC_merge(clipa: vs.VideoNode, clipb: vs.VideoNode, clip_luma: vs.VideoNode = None, weight: float = 0.5,

 method: int = 2, cmc_tresh: float = 0.2, lmm_p: list = (0.2, 0.8, 1.0), alm_p: list = (0.8, 1.0, 0.25)

) -> vs.VideoNode:

clipa: first clip to merge, only RGB24 format is supported

clipb: second clip to merge, only RGB24 format is supported

method: method used to combine clipa with clipb (default = 2):

 0 : clipa only (no merge)

 1 : clipb only (no merge)

 2 : Simple Merge (default):

 the frames are combined using a weighted merge, where the parameter weight

 represent the weight assigned to the colors provided by the clipb frames.

 If weight = 0 will be returned clipa, if = 1 will be returned clipb.

 3 : Constrained Chroma Merge:

 The frames are combined by assigning a limit to the amount of difference in

 chroma values between clipa and clipb this limit is defined by the threshold

 parameter cmc_tresh.

 The limit is applied to the image converted to "YUV". For example, when

 cmc_tresh=0.2, the chroma values "U","V" of clipb frame will be constrained

 to have an absolute percentage difference respect to "U","V" provided by clipa

 not higher than 20%. The final limited frame will be merged again with the clipa

 frame. With this method is suggested a starting weight > 50% (ex. = 60%).

 4 : Luma Masked Merge:

 the frames are combined using a masked merge, the pixels of clipb with

 luma < "luma_mask_limit" will be filled with the pixels of clipa.

 If "luma_white_limit" > "luma_mask_limit" the mask will apply a gradient till

 "luma_white_limit". If the parameter weight > 0 the final masked frame will

 be merged again with the clipa frame.

 5 : Adaptive Luma Merge:

 The frames are combined by decreasing the weight assigned to clipb when the

 luma is below a given threshold given by: luma_threshold. The weight is

69

 calculated using the formula:

 merge_weight = max(weight * (luma/luma_threshold)^alpha, min_weight).

 For example, with: luma_threshold = 0.6 and alpha = 1, the weight assigned to

 clipb will start to decrease linearly when the luma < 60% till "min_weight".

 For alpha=2, begins to decrease quadratically (because luma/luma_threshold < 1).

 The methods 3 and 4 are similar to Simple Merge, but before the merge with clipa the clipb frame

 is limited in the chroma changes (method 3) or limited based on the luma (method 4).

 The method 5 is a Simple Merge where the weight decreases with luma.

 weight: weight given to clipb in all merge methods. If weight = 0 will be returned

 clipa, if = 1 will be returned clipb. range [0-1] (0.01=1%)

 cmc_tresh: chroma_threshold (%), used by: Constrained Chroma Merge, range [0-1] (0.01=1%)

 lmm_p: parameters for method: Luma Masked Merge (see method=4 for a full explanation)

 [0] : luma_mask_limit: luma limit for build the mask used in Luma Masked Merge,

 range [0-1] (0.01=1%)

 [1] : luma_white_limit: the mask will apply a gradient till luma_white_limit,

 range [0-1] (0.01=1%)

 [2] : luma_mask_sat: if < 1 the clipb dark pixels will substitute with the

 desaturated clipa pixels, range [0-1] (0.01=1%)

 alm_p: parameters for method: Adaptive Luma Merge (see method=5 for a full explanation)

 [0] : luma_threshold: threshold for the gradient merge, range [0-1] (0.01=1%)

 [1] : alpha: exponent parameter used for the weight calculation, range [>0]

 [2] : min_weight: min merge weight, range [0-1] (0.01=1%)

 clip_luma: if specified, clip_luma will be used as source of luma component for the merge. It is an

 optional parameter, and it is suggested to provide the clip with the best luma

 resolution between clipa and clipb. It is used only with the methods: 3, 4, 5 and can

 speed up the filter when it uses these methods.

70

6.12 HAVC_recover_clip_color
Utility function to restore the colors of gray pixels in the input clip by using the colors provided in the clip: clip_color.

Useful to repair the clips colored with DeepRemaster.

HAVC_recover_clip_color(clip: vs.VideoNode = None, clip_color: vs.VideoNode = None, sat: float = 0.8, tht: int = 30,

 weight: float = 0.0, alpha: float = 2.0, chroma_resize: bool = True, return_mask: bool = False,

 binary_mask: bool = False) -> vs.VideoNode:

 Where:

 clip: clip to repair the colors, only RGB24 format is supported

 clip_color: clip with the colors to restore, only RGB24 format is supported

 sat: this parameter allows to change the saturation of colored clip (default = 0.8)

 tht: threshold to identify gray pixels, range[0, 255] (default = 30)

 weight: if > 0, the restored frame will be merged with clip_color frame. (default = 0.0)

 alpha: parameter used to control the steepness of gradient curve, values above the default value,

 will preserve more pixels, but could introduce some artifacts, range[1, 10] (default = 2)

 chroma_resize: if True, the frames will be resized to improve the filter speed (default = True)

 return_mask: if True, will be returned the mask used to identify the gray pixels (white region),

 could be useful to visualize the gradient mask for debugging, (default = false).

 binary_mask: if True, will be used a binary mask instead of a gradient mask, could be useful to get

 a clear view on the selected desaturated regions for debugging, (default = false).

71

7.0 Sample scripts
In this chapter will be shown some useful Vapoursynth scripts using the HAVC functions. In Hybrid is possible to

provide in input, not only movies, but also Vapoursynth scripts as shown in the picture below:

Once the script has been loaded by Hybrid it is possible to encode it directly or to add some filters before start the

encoding process.

All the filters that will be added in Hybrid after the loading of Vapoursynth script will be applied on the clip generated

by the script in input. The script that will be executed is the following:

In this example were added the filters: CAS (to increase the sharpness) and AddGrain (to add some grain).

As is possible to see these filters are applied on the script output, which must be a clip.

72

Example 1: script to restore a colored video using DeepRemaster
Imports

import vapoursynth as vs

getting Vapoursynth core

import sys

import os

core = vs.core

Import scripts folder

scriptPath = 'D:/Programs/Hybrid/64bit/vsscripts'

sys.path.insert(0, os.path.abspath(scriptPath))

loading plugins

core.std.LoadPlugin(path="D:/Programs/Hybrid/64bit/vsfilters/MiscFilter/MiscFilters/MiscFilters.dll")

core.std.LoadPlugin(path="D:/Programs/Hybrid/64bit/vsfilters/SourceFilter/LSmashSource/LSMASHSource.dll")

Import scripts

import validate

import vsdeoldify as havc

import adjust

clip = havc.HAVC_read_video(source="source_bw_clip.mp4")

clipRef = havc.HAVC_read_video(source="reference_colored_clip.mp4", fpsnum=clip.fps_num, fpsden=clip.fps_den)

change of hue, saturation, contrast and bright (optional)

clipRef = havc.HAVC_bw_tune(clipRef, bw_tune="custom", hue=5.00, sat=1.05, cont=0.80, bright=-1.1)

--

clip = havc.HAVC_restore_video(clip, clipRef, ex_model = 2, ref_thresh = 0.10, ref_freq = 10,

max_memory_frames = 50, render_vivid = True)

adjusting output color to YUV420P10 for x265Model

clip = core.resize.Bicubic(clip=clip, format=vs.YUV420P10, matrix_s="709", range_s="limited")

set output frame rate (progressive)

clip = core.std.AssumeFPS(clip=clip, fpsnum=clip.fps_num, fpsden=clip.fps_den)

output

clip.set_output()

Example 2: Merging of 2 colored clips and restore of the original luma e resolution of B&W clip
Imports

import vapoursynth as vs

getting Vapoursynth core

import sys

import os

core = vs.core

Import scripts folder

scriptPath = 'D:/Programs/Hybrid/64bit/vsscripts'

sys.path.insert(0, os.path.abspath(scriptPath))

core.std.LoadPlugin(path="D:/Programs/Hybrid/64bit/vsfilters/MiscFilter/MiscFilters/MiscFilters.dll")

core.std.LoadPlugin(path="D:/Programs/Hybrid/64bit/vsfilters/SourceFilter/LSmashSource/LSMASHSource.dll")

Import scripts

import validate

import vsdeoldify as havc

clip_YUV = B&W Clip

clip = havc.HAVC_read_video(source="source_bw_clip.mp4")

Resize clip

clip = core.resize.Spline36(clip=clip, width=1280, height=784)

adjusting output color to YUV420P10 for x265Model

clip_YUV = core.resize.Bicubic(clip=clip, format=vs.YUV420P10, matrix_s="709", range_s="limited",

dither_type="error_diffusion")

clip = CLIP COLORED WITH HAVC

clip = havc.HAVC_read_video(source="colored_havc_clip.mp4", fpsnum=clip_YUV.fps_num, fpsden=clip_YUV.fps_den)

clip = CLIP COLORED WITH DEEPREMASTER

clip_ref = havc.HAVC_read_video(source="colored_deepremaster_clip.mp4",fpsnum=clip_YUV.fps_num,

fpsden=clip_YUV.fps_den)

clip_ref = havc.HAVC_bw_tune(clip=clip_ref, bw_tune="custom", hue=0.00, sat=0.70, cont=1.0, bright=0)

--------------------- START MERGING & RESTORE LUMA --------------------------------------

clip = core.std.Merge(clipa=clip,clipb=clip_ref,weight=0.60)

adjusting output color YUV420P10 for x265Model

clip = core.resize.Bicubic(clip=clip, format=vs.YUV420P10, matrix_s="709", range_s="limited",

dither_type="error_diffusion")

clip = core.std.ShufflePlanes(clips=[clip_YUV, clip, clip], planes=[0, 1, 2], colorfamily= vs.YUV)

set output frame rate to (progressive)

clip = core.std.AssumeFPS(clip=clip, fpsnum=clip_YUV.fps_num, fpsden=clip_YUV.fps_den)

output

clip.set_output()

73

Example 3: Remove the flickering produced by DeepRemaster
Imports

import vapoursynth as vs

getting Vapoursynth core

import sys

import os

core = vs.core

Import scripts folder

scriptPath = 'D:/Programs/Hybrid/64bit/vsscripts'

sys.path.insert(0, os.path.abspath(scriptPath))

loading plugins

core.std.LoadPlugin(path="D:/Programs/Hybrid/64bit/vsfilters/SourceFilter/LSmashSource/LSMASHSource.dll")

core.std.LoadPlugin(path="D:/Programs/Hybrid/64bit/vsfilters/FrameFilter/ReduceFlicker/ReduceFlicker.dll")

Import scripts

import validate

import vsdeoldify as havc

clip = havc.HAVC_read_video(source="sample_deepremaster_flicker.mp4")

clip = havc.HAVC_stabilizer(clip, dark=True, stab=True, stab_p = (5, 'A', 1, 0, 0, 0))

adjusting output color to YUV420P10 for x265Model

clip = core.resize.Bicubic(clip=clip, format=vs.YUV420P10, matrix_s="709", range_s="limited")

removing flickering using ReduceFlicker

clip = core.rdfl.ReduceFlicker(clip=clip, strength=2, aggressive=0)

set output frame rate (progressive)

clip = core.std.AssumeFPS(clip=clip, fpsnum=clip.fps_num, fpsden=clip.fps_den)

output

clip.set_output()

Example 4: Merging a DeepRemaster clip with a simple colored clip with HAVC_merge
Imports

import vapoursynth as vs

getting Vapoursynth core

import sys

import os

core = vs.core

Import scripts folder

scriptPath = 'D:/Programs/Hybrid/64bit/vsscripts'

sys.path.insert(0, os.path.abspath(scriptPath))

loading plugins

core.std.LoadPlugin(path="D:/Programs/Hybrid/64bit/vsfilters/MiscFilter/MiscFilters/MiscFilters.dll")

core.std.LoadPlugin(path="D:/Programs/Hybrid/64bit/vsfilters/SourceFilter/LSmashSource/LSMASHSource.dll")

Import scripts

import validate

import vsdeoldify as havc

clip1 = havc.HAVC_read_video(source="sample_deepremaster.mkv")

decrease the saturation of deepremaster clip (optional)

clip1 = havc.HAVC_bw_tune(clip1, bw_tune="custom", hue=0.00, sat=0.90, cont=1.0, bright=0.0)

clip2 = havc.HAVC_read_video(source="sample_simple_colored.mkv")

merging the 2 clips using the method: Adaptive Luma Merge

clip = havc.HAVC_merge(clipa=clip2, clipb=clip1, weight=0.80, method=5, alm_p=(0.9, 1.0, 0.65))

adjusting output color from: RGB24 to YUV420P10 for x265Model

clip = core.resize.Bicubic(clip=clip, format=vs.YUV420P10, matrix_s="709", range_s="limited")

set output frame rate (progressive)

clip = core.std.AssumeFPS(clip=clip, fpsnum=clip.fps_num, fpsden=clip.fps_den)

output

clip.set_output()

74

Example 5: Recover DeepRemaster gray colors using a colored clip with HAVC_recover_clip_color
Imports

import vapoursynth as vs

getting Vapoursynth core

import sys

import os

core = vs.core

Import scripts folder

scriptPath = 'D:/Programs/Hybrid/64bit/vsscripts'

sys.path.insert(0, os.path.abspath(scriptPath))

loading plugins

core.std.LoadPlugin(path="D:/Programs/Hybrid/64bit/vsfilters/MiscFilter/MiscFilters/MiscFilters.dll")

core.std.LoadPlugin(path="D:/Programs/Hybrid/64bit/vsfilters/SourceFilter/LSmashSource/LSMASHSource.dll")

Import scripts

import validate

import vsdeoldify as havc

clip1 = havc.HAVC_read_video(source="sample_deepremaster.mkv")

decrease the saturation of deepremaster clip (optional)

clip1 = havc.HAVC_bw_tune(clip1, bw_tune="custom", hue=0.00, sat=0.90, cont=1.0, bright=0.0)

clip2 = havc.HAVC_read_video(source="sample_simple_colored.mkv")

recover the gray colors

clip = havc.HAVC_recover_clip_color(clip1, clip2, tht=60, weight=0.0, alpha=2, return_mask=False)

adjusting output color from: RGB24 to YUV420P10 for x265Model

clip = core.resize.Bicubic(clip=clip, format=vs.YUV420P10, matrix_s="709", range_s="limited")

set output frame rate (progressive)

clip = core.std.AssumeFPS(clip=clip, fpsnum=clip.fps_num, fpsden=clip.fps_den)

output

clip.set_output()

75

8.0 Useful companion software
To perform advanced coloring could be useful the following software:

8.0.1 Software for coloring pictures
The project interactive-deep-colorization , whose automatic colorization model is included in HAVC with the name of

siggraph17, provides a useful tool that help to interactively colorize pictures. The installation of this software is quite

complex, fortunately this software has been added in Photoshop Elements since version 2020, see this link for more

details: Automatically colorize your photos.

8.0.2 Software for processing batch of pictures
Sometime it will be necessary to process a significant number of reference frames, for example to change the size

and recompress in jpg. There are a lot of software to perform this task. I found that XnView is good tool to perform

these tasks and I suggest to use it.

Sometime it will be also, necessary to rename a significant number of reference frames. There are a lot of software to

perform this task. I found that Advanced Renamer is a good tool to perform this task and I suggest to use it.

8.2 Useful Web Links
In this chapter are provided some useful links related to the colorization

• The Hybrid forum has a specific thread for the filter HAVC: https://forum.selur.net/thread-3595.html

o It has also a specific thread for general questions: https://forum.selur.net/forum-3.html

• On GitHub there is a specific project in collecting colorization papers:

https://github.com/MarkMoHR/Awesome-Image-Colorization

• The Internet Archive Site is a useful resource to get interesting B&W movie to colorize.

o huge list of movies: https://archive.org/details/opensource_movies

o list of contributed AI colored movies17: https://archive.org/details/colorized-movies

o list of contributed movies colored with HAVC: havc-colorized-movies

• For the users that want to understand better the scripts generated by Hybrid, using the Vapoursynth

functions, is suggested to read the Vapoursynth documentation: http://www.vapoursynth.com/doc/

17 Most of them are based on DeOldify with additional contrast and color correction via Avidemux.

https://github.com/junyanz/interactive-deep-colorization
https://www.adobe.com/products/photoshop-elements.html
https://helpx.adobe.com/photoshop-elements/using/colorize-photo.html
https://www.xnview.com/en/
https://www.advancedrenamer.com/
https://forum.selur.net/thread-3595.html
https://forum.selur.net/forum-3.html
https://github.com/MarkMoHR/Awesome-Image-Colorization
https://archive.org/
https://archive.org/details/opensource_movies
https://archive.org/details/colorized-movies
https://archive.org/details/@whitedan64/lists/1/havc-colorized-movies
http://www.vapoursynth.com/doc/

	1.0 Introduction
	2.0 Installation
	2.1 Installation of Development Version

	3.0 Using the Filter
	3.0.1 Suggested settings for x265 encoding
	3.0.2 Coloring filters configuration page
	3.1 HAVC pre- and post- process filters
	3.1.1 Post-process filters
	3.1.2 Pre-process Filters

	3.2 Chroma Adjustment
	3.3 Color Mapping
	3.4 Merging the models
	3.5 Exemplar-based Models
	3.5.1 The new features problem
	3.5.2 Using Deep-Exemplar to speed-up the encoding

	4.0 Coloring using Hybrid
	4.0.1 Best settings for colors temporal stability
	4.0.2 Best settings to remove colors shifting towards red
	4.1 HAVC Color Mapping/Chroma Adjustment
	4.2 Advanced coloring using adjusted reference frames
	4.3 Using HAVC to restore old colored videos.
	4.3.1 Fixing DeepRemaster problems
	1. Flickering
	2. Inability to apply colors correctly in dark scenes
	3. Inability to apply colors correctly both in bright and dark scenes

	4.4 Using HAVC Models merging
	4.4.1 Alternative inference models to DDcolor

	5.0 Using external filters to improve final HAVC color quality
	5.1 Using LUT (Lookup Tables) as post-process filter
	5.2 Using Retinex as pre-process filter

	6.0 HAVC Functions reference
	6.1 HAVC_main
	6.2 HAVC_deepex
	6.3 HAVC_colorizer
	6.4 HAVC_stabilizer
	6.5 HAVC_read_video
	6.6 HAVC_restore_video
	6.7 HAVC_SceneDetect
	6.8 HAVC_extract_reference_frames
	6.9 HAVC_export_reference_frames
	6.10 HAVC_bw_tune
	6.11 HAVC_merge
	6.12 HAVC_recover_clip_color

	7.0 Sample scripts
	Example 1: script to restore a colored video using DeepRemaster
	Example 2: Merging of 2 colored clips and restore of the original luma e resolution of B&W clip
	Example 3: Remove the flickering produced by DeepRemaster
	Example 4: Merging a DeepRemaster clip with a simple colored clip with HAVC_merge
	Example 5: Recover DeepRemaster gray colors using a colored clip with HAVC_recover_clip_color

	8.0 Useful companion software
	8.0.1 Software for coloring pictures
	8.0.2 Software for processing batch of pictures

	8.2 Useful Web Links

