This forum uses cookies
This forum makes use of cookies to store your login information if you are registered, and your last visit if you are not. Cookies are small text documents stored on your computer; the cookies set by this forum can only be used on this website and pose no security risk. Cookies on this forum also track the specific topics you have read and when you last read them. Please confirm whether you accept or reject these cookies being set.

A cookie will be stored in your browser regardless of choice to prevent you being asked this question again. You will be able to change your cookie settings at any time using the link in the footer.

Deoldify Vapoursynth filter
Okay, that did not work. Sad
trying to install the whl using 'pip install' I get:
python -m pip install spatial_correlation_sampler-0.5.0-py312-cp312-win_amd64.whl -vv

Using pip 24.3.1 from C:\Users\Selur\Desktop\Vapoursynth\Lib\site-packages\pip (python 3.12)
Non-user install because user site-packages disabled
Created temporary directory: C:\Users\Selur\AppData\Local\Temp\pip-build-tracker-8runpy_8
Initialized build tracking at C:\Users\Selur\AppData\Local\Temp\pip-build-tracker-8runpy_8
Created build tracker: C:\Users\Selur\AppData\Local\Temp\pip-build-tracker-8runpy_8
Entered build tracker: C:\Users\Selur\AppData\Local\Temp\pip-build-tracker-8runpy_8
Created temporary directory: C:\Users\Selur\AppData\Local\Temp\pip-install-q66hz_0q
Created temporary directory: C:\Users\Selur\AppData\Local\Temp\pip-ephem-wheel-cache-i96l_u3q
Remote version of pip: 24.3.1
Local version of pip:  24.3.1
Was pip installed by pip? True
ERROR: spatial_correlation_sampler-0.5.0-py312-cp312-win_amd64.whl is not a supported wheel on this platform.
Exception information:
Traceback (most recent call last):
  File "C:\Users\Selur\Desktop\Vapoursynth\Lib\site-packages\pip\_internal\cli\base_command.py", line 105, in _run_wrapper
    status = _inner_run()
             ^^^^^^^^^^^^
  File "C:\Users\Selur\Desktop\Vapoursynth\Lib\site-packages\pip\_internal\cli\base_command.py", line 96, in _inner_run
    return self.run(options, args)
           ^^^^^^^^^^^^^^^^^^^^^^^
  File "C:\Users\Selur\Desktop\Vapoursynth\Lib\site-packages\pip\_internal\cli\req_command.py", line 67, in wrapper
    return func(self, options, args)
           ^^^^^^^^^^^^^^^^^^^^^^^^^
  File "C:\Users\Selur\Desktop\Vapoursynth\Lib\site-packages\pip\_internal\commands\install.py", line 379, in run
    requirement_set = resolver.resolve(
                      ^^^^^^^^^^^^^^^^^
  File "C:\Users\Selur\Desktop\Vapoursynth\Lib\site-packages\pip\_internal\resolution\resolvelib\resolver.py", line 76, in resolve
    collected = self.factory.collect_root_requirements(root_reqs)
                ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "C:\Users\Selur\Desktop\Vapoursynth\Lib\site-packages\pip\_internal\resolution\resolvelib\factory.py", line 545, in collect_root_requirements
    reqs = list(
           ^^^^^
  File "C:\Users\Selur\Desktop\Vapoursynth\Lib\site-packages\pip\_internal\resolution\resolvelib\factory.py", line 496, in _make_requirements_from_install_req
    self._fail_if_link_is_unsupported_wheel(ireq.link)
  File "C:\Users\Selur\Desktop\Vapoursynth\Lib\site-packages\pip\_internal\resolution\resolvelib\factory.py", line 147, in _fail_if_link_is_unsupported_wheel
    raise UnsupportedWheel(msg)
pip._internal.exceptions.UnsupportedWheel: spatial_correlation_sampler-0.5.0-py312-cp312-win_amd64.whl is not a supported wheel on this platform.
Removed build tracker: 'C:\\Users\\Selur\\AppData\\Local\\Temp\\pip-build-tracker-8runpy_8'
any idea how to adress this?

Cu Selur
----
Dev versions are in the 'experimental'-folder of my GoogleDrive, which is linked on the download page.
Reply
(25.01.2025, 15:10)Dan64 Wrote: ----- INSTALLATION GUIDE for: Pytorch-Correlation-extension -----

This will produce under the directory dist a egg file, like
spatial_correlation_sampler-0.5.0-py3.12-win-amd64.egg

This file have to be converted in whell with the command (the script wheel to be installed with conda/pip)

wheel convert spatial_correlation_sampler-0.5.0-py3.12-win-amd64.egg

then is necessary to rename the generated file:

spatial_correlation_sampler-0.5.0-py3.12-win-amd64.whl

in: spatial_correlation_sampler-0.5.0-py3.12-win-amd64.whl.zip

so that is possible to open the zip archive.

The files need to be extracted in the directory (no way to install it with pip)

.\Hybrid\64bit\Vapoursynth\Lib\site-packages

As wrote previously you need to extract the file in the zip archive to the folder: .\Hybrid\64bit\Vapoursynth\Lib\site-packages 

In this way should work.


This is the output of my compilation (using pytorch 2.6 dev)

(colormnet) PS D:\PProjects\Pytorch-Correlation-extension> python setup.py install
running install
d:\anaconda3\envs\colormnet\Lib\site-packages\setuptools\_distutils\cmd.py:66: SetuptoolsDeprecationWarning: setup.py install is deprecated.
!!

        ********************************************************************************
        Please avoid running ``setup.py`` directly.
        Instead, use pypa/build, pypa/installer or other
        standards-based tools.

        See https://blog.ganssle.io/articles/2021/10/setup-py-deprecated.html for details.
        ********************************************************************************

!!
  self.initialize_options()
d:\anaconda3\envs\colormnet\Lib\site-packages\setuptools\_distutils\cmd.py:66: EasyInstallDeprecationWarning: easy_install command is deprecated.
!!

        ********************************************************************************
        Please avoid running ``setup.py`` and ``easy_install``.
        Instead, use pypa/build, pypa/installer or other
        standards-based tools.

        See https://github.com/pypa/setuptools/issues/917 for details.
        ********************************************************************************

!!
  self.initialize_options()
running bdist_egg
running egg_info
writing Correlation_Module\spatial_correlation_sampler.egg-info\PKG-INFO
writing dependency_links to Correlation_Module\spatial_correlation_sampler.egg-info\dependency_links.txt
writing requirements to Correlation_Module\spatial_correlation_sampler.egg-info\requires.txt
writing top-level names to Correlation_Module\spatial_correlation_sampler.egg-info\top_level.txt
d:\anaconda3\envs\colormnet\Lib\site-packages\torch\utils\cpp_extension.py:529: UserWarning: Attempted to use ninja as the BuildExtension backend but we could not find ninja.. Falling back to using the slow distutils backend.
  warnings.warn(msg.format('we could not find ninja.'))
reading manifest file 'Correlation_Module\spatial_correlation_sampler.egg-info\SOURCES.txt'
adding license file 'LICENSE'
writing manifest file 'Correlation_Module\spatial_correlation_sampler.egg-info\SOURCES.txt'
installing library code to build\bdist.win-amd64\egg
running install_lib
running build_py
creating build\lib.win-amd64-cpython-312\spatial_correlation_sampler
copying Correlation_Module\spatial_correlation_sampler\spatial_correlation_sampler.py -> build\lib.win-amd64-cpython-312\spatial_correlation_sampler
copying Correlation_Module\spatial_correlation_sampler\__init__.py -> build\lib.win-amd64-cpython-312\spatial_correlation_sampler
running build_ext
building 'spatial_correlation_sampler_backend' extension
creating build\temp.win-amd64-cpython-312\Release\Correlation_Module
"C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Tools\MSVC\14.29.30133\bin\HostX86\x64\cl.exe" /c /nologo /O2 /W3 /GL /DNDEBUG /MD -DUSE_CUDA -Id:\anaconda3\envs\colormnet\Lib\site-packages\torch\include -Id:\anaconda3\envs\colormnet\Lib\site-packages\torch\include\torch\csrc\api\include -Id:\anaconda3\envs\colormnet\Lib\site-packages\torch\include\TH -Id:\anaconda3\envs\colormnet\Lib\site-packages\torch\include\THC "-IC:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\include" -Id:\anaconda3\envs\colormnet\include -Id:\anaconda3\envs\colormnet\Include "-IC:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Tools\MSVC\14.29.30133\ATLMFC\include" "-IC:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Tools\MSVC\14.29.30133\include" "-IC:\Program Files (x86)\Windows Kits\NETFXSDK\4.8\include\um" "-IC:\Program Files (x86)\Windows Kits\10\include\10.0.19041.0\ucrt" "-IC:\Program Files (x86)\Windows Kits\10\include\10.0.19041.0\shared" "-IC:\Program Files (x86)\Windows Kits\10\include\10.0.19041.0\um" "-IC:\Program Files (x86)\Windows Kits\10\include\10.0.19041.0\winrt" "-IC:\Program Files (x86)\Windows Kits\10\include\10.0.19041.0\cppwinrt" /EHsc /TpCorrelation_Module\correlation.cpp /Fobuild\temp.win-amd64-cpython-312\Release\Correlation_Module\correlation.obj /MD /wd4819 /wd4251 /wd4244 /wd4267 /wd4275 /wd4018 /wd4190 /wd4624 /wd4067 /wd4068 /EHsc -std=c++17 -fopenmp -DTORCH_API_INCLUDE_EXTENSION_H -DTORCH_EXTENSION_NAME=spatial_correlation_sampler_backend -D_GLIBCXX_USE_CXX11_ABI=0 /std:c++17
cl : Command line warning D9002 : ignoring unknown option '-std=c++17'
cl : Command line warning D9002 : ignoring unknown option '-fopenmp'
correlation.cpp
"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\bin\nvcc" -c Correlation_Module\correlation_cuda_kernel.cu -o build\temp.win-amd64-cpython-312\Release\Correlation_Module\correlation_cuda_kernel.obj -Id:\anaconda3\envs\colormnet\Lib\site-packages\torch\include -Id:\anaconda3\envs\colormnet\Lib\site-packages\torch\include\torch\csrc\api\include -Id:\anaconda3\envs\colormnet\Lib\site-packages\torch\include\TH -Id:\anaconda3\envs\colormnet\Lib\site-packages\torch\include\THC "-IC:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\include" -Id:\anaconda3\envs\colormnet\include -Id:\anaconda3\envs\colormnet\Include "-IC:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Tools\MSVC\14.29.30133\ATLMFC\include" "-IC:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Tools\MSVC\14.29.30133\include" "-IC:\Program Files (x86)\Windows Kits\NETFXSDK\4.8\include\um" "-IC:\Program Files (x86)\Windows Kits\10\include\10.0.19041.0\ucrt" "-IC:\Program Files (x86)\Windows Kits\10\include\10.0.19041.0\shared" "-IC:\Program Files (x86)\Windows Kits\10\include\10.0.19041.0\um" "-IC:\Program Files (x86)\Windows Kits\10\include\10.0.19041.0\winrt" "-IC:\Program Files (x86)\Windows Kits\10\include\10.0.19041.0\cppwinrt" -Xcudafe --diag_suppress=dll_interface_conflict_dllexport_assumed -Xcudafe --diag_suppress=dll_interface_conflict_none_assumed -Xcudafe --diag_suppress=field_without_dll_interface -Xcudafe --diag_suppress=base_class_has_different_dll_interface -Xcompiler /EHsc -Xcompiler /wd4068 -Xcompiler /wd4067 -Xcompiler /wd4624 -Xcompiler /wd4190 -Xcompiler /wd4018 -Xcompiler /wd4275 -Xcompiler /wd4267 -Xcompiler /wd4244 -Xcompiler /wd4251 -Xcompiler /wd4819 -Xcompiler /MD -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr -DTORCH_API_INCLUDE_EXTENSION_H -DTORCH_EXTENSION_NAME=spatial_correlation_sampler_backend -D_GLIBCXX_USE_CXX11_ABI=0 -gencode=arch=compute_86,code=sm_86 -std=c++17 --use-local-env
correlation_cuda_kernel.cu
tmpxft_00005454_00000000-7_correlation_cuda_kernel.cudafe1.cpp
"C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Tools\MSVC\14.29.30133\bin\HostX86\x64\cl.exe" /c /nologo /O2 /W3 /GL /DNDEBUG /MD -DUSE_CUDA -Id:\anaconda3\envs\colormnet\Lib\site-packages\torch\include -Id:\anaconda3\envs\colormnet\Lib\site-packages\torch\include\torch\csrc\api\include -Id:\anaconda3\envs\colormnet\Lib\site-packages\torch\include\TH -Id:\anaconda3\envs\colormnet\Lib\site-packages\torch\include\THC "-IC:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\include" -Id:\anaconda3\envs\colormnet\include -Id:\anaconda3\envs\colormnet\Include "-IC:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Tools\MSVC\14.29.30133\ATLMFC\include" "-IC:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Tools\MSVC\14.29.30133\include" "-IC:\Program Files (x86)\Windows Kits\NETFXSDK\4.8\include\um" "-IC:\Program Files (x86)\Windows Kits\10\include\10.0.19041.0\ucrt" "-IC:\Program Files (x86)\Windows Kits\10\include\10.0.19041.0\shared" "-IC:\Program Files (x86)\Windows Kits\10\include\10.0.19041.0\um" "-IC:\Program Files (x86)\Windows Kits\10\include\10.0.19041.0\winrt" "-IC:\Program Files (x86)\Windows Kits\10\include\10.0.19041.0\cppwinrt" /EHsc /TpCorrelation_Module\correlation_sampler.cpp /Fobuild\temp.win-amd64-cpython-312\Release\Correlation_Module\correlation_sampler.obj /MD /wd4819 /wd4251 /wd4244 /wd4267 /wd4275 /wd4018 /wd4190 /wd4624 /wd4067 /wd4068 /EHsc -std=c++17 -fopenmp -DTORCH_API_INCLUDE_EXTENSION_H -DTORCH_EXTENSION_NAME=spatial_correlation_sampler_backend -D_GLIBCXX_USE_CXX11_ABI=0 /std:c++17
cl : Command line warning D9002 : ignoring unknown option '-std=c++17'
cl : Command line warning D9002 : ignoring unknown option '-fopenmp'
correlation_sampler.cpp
"C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Tools\MSVC\14.29.30133\bin\HostX86\x64\link.exe" /nologo /INCREMENTAL:NO /LTCG /DLL /MANIFEST:EMBED,ID=2 /MANIFESTUAC:NO /LIBPATH:d:\anaconda3\envs\colormnet\Lib\site-packages\torch\lib "/LIBPATH:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\lib\x64" /LIBPATH:d:\anaconda3\envs\colormnet\libs /LIBPATH:d:\anaconda3\envs\colormnet /LIBPATH:d:\anaconda3\envs\colormnet\PCbuild\amd64 "/LIBPATH:C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Tools\MSVC\14.29.30133\ATLMFC\lib\x64" "/LIBPATH:C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Tools\MSVC\14.29.30133\lib\x64" "/LIBPATH:C:\Program Files (x86)\Windows Kits\NETFXSDK\4.8\lib\um\x64" "/LIBPATH:C:\Program Files (x86)\Windows Kits\10\lib\10.0.19041.0\ucrt\x64" "/LIBPATH:C:\Program Files (x86)\Windows Kits\10\lib\10.0.19041.0\um\x64" c10.lib torch.lib torch_cpu.lib torch_python.lib cudart.lib c10_cuda.lib torch_cuda.lib /EXPORT:PyInit_spatial_correlation_sampler_backend build\temp.win-amd64-cpython-312\Release\Correlation_Module\correlation.obj build\temp.win-amd64-cpython-312\Release\Correlation_Module\correlation_cuda_kernel.obj build\temp.win-amd64-cpython-312\Release\Correlation_Module\correlation_sampler.obj /OUT:build\lib.win-amd64-cpython-312\spatial_correlation_sampler_backend.cp312-win_amd64.pyd /IMPLIB:build\temp.win-amd64-cpython-312\Release\Correlation_Module\spatial_correlation_sampler_backend.cp312-win_amd64.lib -lgomp
LINK : warning LNK4044: unrecognized option '/lgomp'; ignored
   Creating library build\temp.win-amd64-cpython-312\Release\Correlation_Module\spatial_correlation_sampler_backend.cp312-win_amd64.lib and object build\temp.win-amd64-cpython-312\Release\Correlation_Module\spatial_correlation_sampler_backend.cp312-win_amd64.exp
Generating code
Finished generating code
creating build\bdist.win-amd64\egg
creating build\bdist.win-amd64\egg\spatial_correlation_sampler
copying build\lib.win-amd64-cpython-312\spatial_correlation_sampler\spatial_correlation_sampler.py -> build\bdist.win-amd64\egg\spatial_correlation_sampler
copying build\lib.win-amd64-cpython-312\spatial_correlation_sampler\__init__.py -> build\bdist.win-amd64\egg\spatial_correlation_sampler
copying build\lib.win-amd64-cpython-312\spatial_correlation_sampler_backend.cp312-win_amd64.pyd -> build\bdist.win-amd64\egg
byte-compiling build\bdist.win-amd64\egg\spatial_correlation_sampler\spatial_correlation_sampler.py to spatial_correlation_sampler.cpython-312.pyc
byte-compiling build\bdist.win-amd64\egg\spatial_correlation_sampler\__init__.py to __init__.cpython-312.pyc
creating stub loader for spatial_correlation_sampler_backend.cp312-win_amd64.pyd
byte-compiling build\bdist.win-amd64\egg\spatial_correlation_sampler_backend.py to spatial_correlation_sampler_backend.cpython-312.pyc
creating build\bdist.win-amd64\egg\EGG-INFO
copying Correlation_Module\spatial_correlation_sampler.egg-info\PKG-INFO -> build\bdist.win-amd64\egg\EGG-INFO
copying Correlation_Module\spatial_correlation_sampler.egg-info\SOURCES.txt -> build\bdist.win-amd64\egg\EGG-INFO
copying Correlation_Module\spatial_correlation_sampler.egg-info\dependency_links.txt -> build\bdist.win-amd64\egg\EGG-INFO
copying Correlation_Module\spatial_correlation_sampler.egg-info\requires.txt -> build\bdist.win-amd64\egg\EGG-INFO
copying Correlation_Module\spatial_correlation_sampler.egg-info\top_level.txt -> build\bdist.win-amd64\egg\EGG-INFO
writing build\bdist.win-amd64\egg\EGG-INFO\native_libs.txt
zip_safe flag not set; analyzing archive contents...
__pycache__.spatial_correlation_sampler_backend.cpython-312: module references __file__
creating 'dist\spatial_correlation_sampler-0.5.0-py3.12-win-amd64.egg' and adding 'build\bdist.win-amd64\egg' to it
removing 'build\bdist.win-amd64\egg' (and everything under it)
Processing spatial_correlation_sampler-0.5.0-py3.12-win-amd64.egg
removing 'd:\anaconda3\envs\colormnet\lib\site-packages\spatial_correlation_sampler-0.5.0-py3.12-win-amd64.egg' (and everything under it)
creating d:\anaconda3\envs\colormnet\lib\site-packages\spatial_correlation_sampler-0.5.0-py3.12-win-amd64.egg
Extracting spatial_correlation_sampler-0.5.0-py3.12-win-amd64.egg to d:\anaconda3\envs\colormnet\lib\site-packages
Adding spatial-correlation-sampler 0.5.0 to easy-install.pth file

Installed d:\anaconda3\envs\colormnet\lib\site-packages\spatial_correlation_sampler-0.5.0-py3.12-win-amd64.egg
Processing dependencies for spatial-correlation-sampler==0.5.0
Searching for numpy==2.1.2
Best match: numpy 2.1.2
Adding numpy 2.1.2 to easy-install.pth file
Installing f2py-script.py script to d:\anaconda3\envs\colormnet\Scripts
Installing f2py.exe script to d:\anaconda3\envs\colormnet\Scripts
Installing numpy-config-script.py script to d:\anaconda3\envs\colormnet\Scripts
Installing numpy-config.exe script to d:\anaconda3\envs\colormnet\Scripts

Using d:\anaconda3\envs\colormnet\lib\site-packages
Searching for torch==2.6.0.dev20241101+cu124
Best match: torch 2.6.0.dev20241101+cu124
Adding torch 2.6.0.dev20241101+cu124 to easy-install.pth file
Installing convert-caffe2-to-onnx-script.py script to d:\anaconda3\envs\colormnet\Scripts
Installing convert-caffe2-to-onnx.exe script to d:\anaconda3\envs\colormnet\Scripts
Installing convert-onnx-to-caffe2-script.py script to d:\anaconda3\envs\colormnet\Scripts
Installing convert-onnx-to-caffe2.exe script to d:\anaconda3\envs\colormnet\Scripts
Installing torchfrtrace-script.py script to d:\anaconda3\envs\colormnet\Scripts
Installing torchfrtrace.exe script to d:\anaconda3\envs\colormnet\Scripts
Installing torchrun-script.py script to d:\anaconda3\envs\colormnet\Scripts
Installing torchrun.exe script to d:\anaconda3\envs\colormnet\Scripts

Using d:\anaconda3\envs\colormnet\lib\site-packages
Searching for sympy==1.13.1
Best match: sympy 1.13.1
Adding sympy 1.13.1 to easy-install.pth file
Installing isympy-script.py script to d:\anaconda3\envs\colormnet\Scripts
Installing isympy.exe script to d:\anaconda3\envs\colormnet\Scripts

Using d:\anaconda3\envs\colormnet\lib\site-packages
Searching for setuptools==75.3.0
Best match: setuptools 75.3.0
Processing setuptools-75.3.0-py3.12.egg
Adding setuptools 75.3.0 to easy-install.pth file

Using d:\anaconda3\envs\colormnet\lib\site-packages\setuptools-75.3.0-py3.12.egg
Searching for fsspec==2024.10.0
Best match: fsspec 2024.10.0
Adding fsspec 2024.10.0 to easy-install.pth file

Using d:\anaconda3\envs\colormnet\lib\site-packages
Searching for jinja2==3.1.4
Best match: jinja2 3.1.4
Adding jinja2 3.1.4 to easy-install.pth file

Using d:\anaconda3\envs\colormnet\lib\site-packages
Searching for networkx==3.4.2
Best match: networkx 3.4.2
Adding networkx 3.4.2 to easy-install.pth file

Using d:\anaconda3\envs\colormnet\lib\site-packages
Searching for typing-extensions==4.12.2
Best match: typing-extensions 4.12.2
Adding typing-extensions 4.12.2 to easy-install.pth file

Using d:\anaconda3\envs\colormnet\lib\site-packages\setuptools\_vendor
Searching for filelock==3.16.1
Best match: filelock 3.16.1
Adding filelock 3.16.1 to easy-install.pth file

Using d:\anaconda3\envs\colormnet\lib\site-packages
Searching for mpmath==1.3.0
Best match: mpmath 1.3.0
Adding mpmath 1.3.0 to easy-install.pth file

Using d:\anaconda3\envs\colormnet\lib\site-packages
Searching for MarkupSafe==2.1.5
Best match: MarkupSafe 2.1.5
Adding MarkupSafe 2.1.5 to easy-install.pth file

Using d:\anaconda3\envs\colormnet\lib\site-packages
Finished processing dependencies for spatial-correlation-sampler==0.5.0

You get too many warnings try to install Visual Studio 2019 (maybe the compiler is more compatible).
 
These are my environment variables

CUDA_MODULE_LOADING=LAZY
CUDA_PATH=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4
CUDA_PATH_V11_4=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.4
CUDA_PATH_V12_1=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1
CUDA_PATH_V12_4=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4
TORCH_CUDA_ARCH_LIST=8.6

Dan
Reply
Ahhh, I overlooked that.
I also installed "numba" and "scikit-image", but something is still missing:
clip = HAVC_main(clip=clip, EnableDeepEx=True, DeepExMethod=0, DeepExRefMerge=0, DeepExOnlyRefFrames=False, ScFrameDir=None, DeepExModel=0, DeepExEncMode=0, DeepExMaxMemFrames=0)
ends with:
TypeError: ddcolor() got an unexpected keyword argument 'scenechange'
ARGH,.. forgot you modified ddcolor
https://github.com/dan64/vs-deoldify/rel...ne-any.whl
Did you contact HolyWu to incorporate your changes to ddcolor?

=> DeOldify works now with ColorMNet and the new Pytorch! Smile
Thanks for the help!

Cu Selur

Ps.: Also attached a new Torch_Vapoursynth.md Smile


Attached Files
.txt   Torch_Vapoursynth.md.txt (Size: 4,83 KB / Downloads: 10)
----
Dev versions are in the 'experimental'-folder of my GoogleDrive, which is linked on the download page.
Reply
I'm happy that is working, unfortunately Pytorch-Correlation-extension is one of the packages most sensible in changes of pytorch.
In this way now you can use any pytorch release...

I'm trying to resurrect DeepRemaster to include it in the next release of HAVC.

I hope to be able to find a useful way to use it as alternative color stabilizer to ColorMNet.

ColorMNet is able to keep a long memory of the past, while DeepRemaster (properly configured) is able to keep a short memory both of the past and the future.
So it could be interesting to add it in HAVC.

Dan
Reply
Fingers crossed. Smile

Cu Selur
----
Dev versions are in the 'experimental'-folder of my GoogleDrive, which is linked on the download page.
Reply
Just a heads up: https://github.com/vapoursynth/vapoursyn...0efb02db23 seems like Vapoursynth Python 3.12 support is dated,...
----
Dev versions are in the 'experimental'-folder of my GoogleDrive, which is linked on the download page.
Reply
Please keep the experimental version to Paython 3.12.
I'm going to release tomorrow HAVC 5.0 RC1 with a significant number of improvements.
This release will have some little (I hope) impact to the GUI.

Thanks,
Dan
Reply
Yes, I'll stick to Python 3.12 atm. 3.13 will probably come with R71, which probably is not far away when myrsloik is bumping the python version to 3.13.
Once R71 is released (probably by the end of February would be my guess), I'll release a public version before working on switching to R71 in dev versions.

Cu Selur
----
Dev versions are in the 'experimental'-folder of my GoogleDrive, which is linked on the download page.
Reply
Hello Selur,
 
Please find attached the release candidate RC1 of new HAVC release 5.0: vsdeoldify-5.0.0_RC1.zip
In this release there are many improvements and some of them will have an impact also on the GUI. To help to understand better the changes on the code I provided some example in the attachment HAVC5_samples.zip

The main changes are the following:

----------------------------------------------------------------------
1) NEW EXEMPLAR-BASED MODEL : DeepRemaster
----------------------------------------------------------------------

First all, I found an interesting way to add DeepRemaster to HAVC. To use it is necessary to download the file remasternet.pth.tar (is not a tar, just a "pth" renamed as "pth.tar") and copy it in: ".\Hybrid\64bit\Vapoursynth\Lib\site-packages\vsdeoldify\remaster\model". 

In the GUI the new model can be added in the “Exemplar Models” section as “ColorMnet” and “Deep-Exemplar”.

Like ColorMNet is possible to specify the max number of reference frames to keep in memory, but in this case the number is limited to 10-20 max 50. The problem is that more reference frames will be used in the inference more time will be necessary to estimate the colored image. Like BestSource I need to scan all the clip to get all the reference frames, because in my implementation of Deep-Remaster are provided in input for the inference 50% of past frames and 50% of future frames and to do that I need to scan the clip for the reference frames. 
To don’t slow down too much the start of the encoding I implemented a buffered scan where the frames are read in batch during the coloring process. 

This method can be used  to colorize a movie with a style that tries to maintain the visual impact of original black and white version and could be interesting for some kind of movie.

Here an example of movie colored using DeepRemaster: The Trial (colorized, 1962)

Here some sample code:

Impact on HAVC_deepex "ex_model":
  0 : ColorMNet (default)
  1 : Deep-Exemplar
  2 : Deep-Remaster

see examples:

HAVC_main_deepremaster_extRF.vpy : example of using DeepRemaster with only external reference
frames

HAVC_main_deepremaster_HAVC.vpy : example of using DeepRemaster with HAVC

HAVC_main_deepremaster_HAVC+extRF.vpy : example of using DeepRemaster with HAVC
and external reference frames

Impact on HAVC_main "DeepExModel":
  0 : ColorMNet (default)
  1 : Deep-Exemplar
  2 : Deep-Remaster

see example

HAVC_main_deepremaster_HAVC_merge.vpy : example of using DeepRemaster with HAVC
and ref_merge > 0

----------------------------------------------------------------------
2) COLORING MODEL: HAVC and DeOldify (Only)   
----------------------------------------------------------------------

With the addition of DeepRemaster now there are 7 models implemented in HAVC and I think that is time to rename the filter DeOldify in HAVC as shown in the following picture

[Image: attachment.php?aid=2944]

 
and to add the original version of DeOldify like DDcolor as shown in the following picture

[Image: attachment.php?aid=2945]

Here some sample code:

HAVC_deoldify_only.vpy : example to call DeOldify (original version)
since the previous DeOldify will be called HAVC it is right to provide
also the color model DeOldify (only) as DDcolor.

----------------------------------------------------------------------
3) NEW USE of Method=5 "HAVC different_from_video"
----------------------------------------------------------------------

When is select the methd "HAVC different_from_video" is necessary to
enable "Ref FrameDir" to select a video clip like in vs-propainter. This
method is useful to restore some old colored movies or movies colored with DeOldify

In this case the clipRef must use the external video selected using
"Ref FrameDir", and Hybrid need to provide the necessary conversion code to
render clipRef compatible with HAVC.

Here some sample code:

HAVC_deepremaster_method=5.vpy : example of using DeepRemaster with method 5


It has been added an additional parameter ref_freq in HAVC_deepex to manage better the method = 5
It need to be added in the region 3 of the big picture above.

:param ref_freq:            If (ref_merge > 0 or method == 5). If > 0 will be generated at least a reference frame
                                every "ref_freq" frames. range [0-1500]. If is not set, is assigned automatically a
                                value depending on ref_merge value and method.


----------------------------------------------------------------------
4) NEW ColorMNet encode_mode=2 -> "remote all-ref"
----------------------------------------------------------------------

In HAVC 5.0 has been introduced the possibility to provide to ColorMNet all
the reference frames at the beginning of coloring process. Its use is quite
transparent for Hybrid. The main usage is with the method=5.
This method need to be added in the GUI in the region 3 and will extended the encode_mode parameter

:param encode_mode:         Parameter used by ColorMNet to define the encode mode strategy.
                                Available values are:
                                     0: remote encoding. The frames will be colored by a thread outside Vapoursynth.
                                                         This option don't have any GPU memory limitation and will allow
                                                         to fully use the long term frame memory.
                                                         It is the faster encode method (default)
                                     1: local encoding.  The frames will be colored inside the Vapoursynth environment.
                                                         In this case the max_memory will be limited by the size of GPU
                                                         memory (max 15 frames for 24GB GPU).
                                                         Useful for coloring clips with a lot of smooth transitions,
                                                         since in this case is better to use a short frame memory or
                                                         the Deep-Exemplar model, which is faster.
                                     2: remote all-rf    Same as "remote encoding" but all the available reference frames
                                                         will be used for the inference at the beginning of encoding.

 
Here some sample code:

HAVC_colormnet_method=5.vpy : example of using method=5 with ColorMNet


----------------------------------------------------------------------
5) NEW PRESET: BlackWhiteTune
----------------------------------------------------------------------

This preset need to be added in the region 1 of the big picture above.

Impact on HAVC_main "BlackWhiteTune":

:param BlackWhiteTune:      This parameter allows to improve contrast and luminosity of Black & White input clip to
                                be colored with HAVC. Allowed values are:
                                    'None' (default)
                                    'Light',
                                    'Medium',
                                    'Strong'
 


Here some sample code

HAVC_deoldify_bw_tune_preset.vpy : example of using the new preset BlackWhiteTune

In the custom section is Hybrid that must generate the coide for usuing it.

HAVC_deoldify_bw_tune.vpy : example to apply the preset BlackWhiteTune in the custom section
in this case is necessary to cal the function

clip = HAVC_bw_tune(clip, "strong", "on")  -> at the start of coloring process

and

clip = HAVC_bw_tune(clip, "strong", "off") -> at the end of coloring process


I hope that you can incorporate the described changes in Hybrid.

Thanks,
Dan


Attached Files Thumbnail(s)
       

.zip   HAVC5_samples.zip (Size: 2,56 MB / Downloads: 5)
.zip   vsdeoldify-5.0.0_RC1.zip (Size: 421,77 KB / Downloads: 3)
Reply
not at home atm. will look at it later and report back, had a quick look at beginning of 'The Trial'. Sadly, as soon as there is motion, things turn b&w.
----
Dev versions are in the 'experimental'-folder of my GoogleDrive, which is linked on the download page.
Reply


Forum Jump:


Users browsing this thread: 3 Guest(s)