This forum uses cookies
This forum makes use of cookies to store your login information if you are registered, and your last visit if you are not. Cookies are small text documents stored on your computer; the cookies set by this forum can only be used on this website and pose no security risk. Cookies on this forum also track the specific topics you have read and when you last read them. Please confirm whether you accept or reject these cookies being set.

A cookie will be stored in your browser regardless of choice to prevent you being asked this question again. You will be able to change your cookie settings at any time using the link in the footer.

New AutoColor adjustment filter
#11
Quote:On my tests the AviSynth script is encoded at about 40fps (using avs import in Vapoursynth), while the Vapoursynth version is about 2X faster.
Strange for me in a quick test, avs.ColorYUV2(autogain=true) was around 3000 fps and autoadjust.AutoGain around 450 fps.
Busy week this, week and I'm mainly afk Rolleyes
----
Dev versions are in the 'experimental'-folder of my GoogleDrive, which is linked on the download page.
Reply
#12
Rolleyes
(15.04.2025, 20:02)Selur Wrote:
Quote:On my tests the AviSynth script is encoded at about 40fps (using avs import in Vapoursynth), while the Vapoursynth version is about 2X faster.
Strange for me in a quick test, avs.ColorYUV2(autogain=true) was around 3000 fps and autoadjust.AutoGain around 450 fps.
Busy week this, week and I'm mainly afk  Rolleyes

I performed the tests on the completed FRED script (attached)

If effect using the "Benchmark" tool included in vsedit. I get a speed of 40fps for the AVS version and 450fps for the VS version.
So it seems that the bottleneck is AutoGain, but given the total result, for the moment I don't consider this an issue. Rolleyes
 
Dan


Attached Files
.zip   FRED_Restoring_Blending_Cleaning.zip (Size: 1,49 MB / Downloads: 7)
Reply
#13
Hi Dan &  Selur
I wanted to ask for your opinion on this test result I recently produced.

I tried to closely follow the steps Fred shared in one of his posts from 2017 (where he described his updated script with filters like RemoveDirtSMC(), GamMac(), DePanStabilize(), multiple Tweak() operations, RgbAdjust(), and a specific multi-stage sharpening setup using UnsharpMask and Sharpen()).

I believe the outcome looks quite close to what Fred was achieving in his later work — especially in terms of color balance and fine detail recovery.

What do you think of the result?

Thanks again for all your work and insight — your guidance and Hybrid support really make these tests possible!

Best regards,


Attached Files
.zip   GamMac Result fred 2017.zip (Size: 9,85 MB / Downloads: 10)
Reply
#14
Quote: What do you think of the result?
Totally oversharpened, overcompressed, shapened macroblocking,... => to me TestScenefred.mp4 looks horrible.
----
Dev versions are in the 'experimental'-folder of my GoogleDrive, which is linked on the download page.
Reply
#15
@Dan64: I compared the speed of AutoGain with PIL and without it:
With:
def AutoGain(clip: vs.VideoNode, clip_limit : float = 1.0, strength: float = 0.5) -> vs.VideoNode:
   """ AutoGain filter using OpenCV

        :param clip:          Clip to process (support only RGB24).
        :param clip_limit:    Threshold for contrast limiting, range [0, 50] (default=1.0)
        :param strength:      Strength of the filter. A strength=0 means that the clip is returned unchanged,
                              range [0, 1] (default=0.5)
   """
   if clip.format.id != vs.RGB24:
      # clip not in RGB24 format, it will be converted
      if clip.format.color_family == vs.ColorFamily.YUV:
         rgb_clip = clip.resize.Bicubic(format=vs.RGB24, matrix_in_s="709", range_s="full",
                                    dither_type="error_diffusion")
      else:
         rgb_clip = clip.resize.Bicubic(format=vs.RGB24, range_s="full")
   else:
      rgb_clip = clip

   weight: float = max(min(1.0 - strength, 1.0), 0.0)

   def frame_autogain(n, f, bits_per_pixel: int = 8):

      img = _frame_to_image(f)
      img_np = np.asarray(img)

      yuv = cv2.cvtColor(img_np, cv2.COLOR_RGB2YUV)
      yuv_new = cv2.cvtColor(img_np, cv2.COLOR_RGB2YUV)

      dY = yuv[:, :, 0]

      if bits_per_pixel <= 16:
         bits_per_pixel_for_freq = bits_per_pixel
      else:
         bits_per_pixel_for_freq = 16

      loose_max_limit = (235 + 1) << (bits_per_pixel_for_freq - 8)
      loose_min_limit = 16 << (bits_per_pixel_for_freq - 8)
      loose_max = dY.max()
      loose_min = dY.min()
      maxY = min(loose_max, loose_max_limit)
      minY = max(loose_min, loose_min_limit)

      y_range = maxY - minY

      y_offset = 0
      y_gain = 0
      if y_range > 0:
         scale = (loose_max_limit - loose_min_limit) / y_range
         y_offset = (loose_min_limit - scale * minY) / (1 << (bits_per_pixel_for_freq - 8))
         y_gain = (256 * (scale - 1.0))

      if clip_limit > 0:
         y_offset = y_offset * (1 - clip_limit/100.0)
         y_gain = y_gain  * (1 - clip_limit/100.0)

      dY = (dY + y_offset) * (y_gain/256 + 1)

      yuv_new[:, :, 0] = dY.clip(min=0, max=255).astype(np.uint8)

      img_new = Image.fromarray(cv2.cvtColor(yuv_new, cv2.COLOR_YUV2RGB))

      return _image_to_frame(img_new, f.copy())

   clip_a = clip.std.ModifyFrame(clips=rgb_clip, selector=partial(frame_autogain,
                                                                    bits_per_pixel = clip.format.bits_per_sample))
   clip_b = rgb_clip

   if weight > 0:
      clip_rgb = core.std.Merge(clip_a, clip_b, weight)
   else:
      clip_rgb = clip_a

   if clip.format.id != vs.RGB24:
      # convert the format for tweak to YUV 8bits
      clip_new = clip_rgb.resize.Bicubic(format=vs.YUV420P8, matrix_s="709", range_s="limited")
   else:
      clip_new = clip_rgb

   return clip_new
without:
def AutoGain2(clip: vs.VideoNode, clip_limit: float = 1.0, strength: float = 0.5) -> vs.VideoNode:
    if clip.format.id != vs.RGB24:
        rgb_clip = (clip.resize.Bicubic(format=vs.RGB24, matrix_in_s="709", range_s="full")
                    if clip.format.color_family == vs.ColorFamily.YUV else
                    clip.resize.Bicubic(format=vs.RGB24, range_s="full"))
    else:
        rgb_clip = clip

    weight = max(min(1.0 - strength, 1.0), 0.0)
    bits_per_pixel = clip.format.bits_per_sample
    bits_per_pixel_for_freq = min(bits_per_pixel, 16)
    loose_max_limit = (235 + 1) << (bits_per_pixel_for_freq - 8)
    loose_min_limit = 16 << (bits_per_pixel_for_freq - 8)
    clip_limit_factor = (1 - clip_limit/100.0) if clip_limit > 0 else 1.0

    def frame_autogain(n, f):
        # Create RGB numpy array from frame planes
        img_np = np.stack([
            np.asarray(f[0], dtype=np.uint8),
            np.asarray(f[1], dtype=np.uint8),
            np.asarray(f[2], dtype=np.uint8)
        ], axis=2)
        
        # Process image
        yuv = cv2.cvtColor(img_np, cv2.COLOR_RGB2YUV)
        dY = yuv[:, :, 0]
        
        maxY = min(dY.max(), loose_max_limit)
        minY = max(dY.min(), loose_min_limit)
        y_range = maxY - minY

        if y_range > 0:
            scale = (loose_max_limit - loose_min_limit) / y_range
            y_offset = ((loose_min_limit - scale * minY) /
                       (1 << (bits_per_pixel_for_freq - 8))) * clip_limit_factor
            y_gain = (256 * (scale - 1.0)) * clip_limit_factor
            
            yuv[:, :, 0] = np.clip((dY + y_offset) * (y_gain/256 + 1), 0, 255)
        
        # Convert back to RGB
        rgb_new = cv2.cvtColor(yuv, cv2.COLOR_YUV2RGB)
        
        # Create new frame and copy planes
        new_frame = f.copy()
        for i in range(3):
            np.copyto(np.asarray(new_frame[i]), rgb_new[:, :, i])
        return new_frame

    clip_a = rgb_clip.std.ModifyFrame(clips=[rgb_clip], selector=frame_autogain)
    clip_rgb = core.std.Merge(clip_a, rgb_clip, weight) if weight > 0 else clip_a
    
    return (clip_rgb.resize.Bicubic(format=vs.YUV420P8, matrix_s="709", range_s="limited")
            if clip.format.id != vs.RGB24 else clip_rgb)

Using vsViewers Benchmark tool I got:
460-480fps with "clip = autoadjust.AutoGain(clip)"
and
640-650fps "clip = autoadjust.AutoGain2(clip)"
that's nearly 40% faster. Do you get similar speeds?

Cu Selur

Ps.: Since I don't like that Fred and some other users write their scripts, I also attached a function which wraps the whole thing.
PPs.: added UnsharpenMask to sharpen.py


Attached Files
.zip   fred.zip (Size: 1,78 KB / Downloads: 5)
----
Dev versions are in the 'experimental'-folder of my GoogleDrive, which is linked on the download page.
Reply
#16
Thank you for your review selur!

What remarkable work in fred.py , Mr Selur!
Reply
#17
Here's a AutoLevelsYUV444 version:
import vapoursynth as vs
import numpy as np
import ctypes
import cv2

core = vs.core

def AutoLevelsYUV444(
    clip: vs.VideoNode,
    method: int = 4,
    clip_limit: float = 1.0,
    gridsize: int = 8,
    strength: float = 0.5
) -> vs.VideoNode:
    fmt = clip.format
    if fmt.color_family != vs.YUV or fmt.subsampling_w or fmt.subsampling_h:
        raise vs.Error("AutoLevelsYUV444: Only YUV444 formats are allowed")

    bits     = fmt.bits_per_sample
    is_float = fmt.sample_type == vs.FLOAT
    peak     = 1.0 if is_float else (1 << bits) - 1

    # Choose NumPy and ctypes types based on bit depth
    if is_float:
        dtype = np.float32
        ctype = ctypes.c_float
    else:
        dtype = np.uint8 if bits <= 8 else np.uint16
        ctype = ctypes.c_uint8 if bits <= 8 else ctypes.c_uint16

    def _process_plane(plane: np.ndarray, mode: str, algo: int) -> np.ndarray:
        # plane: 2D array with values in [0, peak]
        # → 8-bit for OpenCV
        p8 = np.clip((plane / peak) * 255, 0, 255).astype(np.uint8)
        if mode == "clahe":
            clahe = cv2.createCLAHE(clipLimit=clip_limit,
                                    tileGridSize=(gridsize, gridsize))
            out8 = clahe.apply(p8)
        elif mode == "hist":
            out8 = cv2.equalizeHist(p8)
        else:  # scale
            hist = cv2.calcHist([p8],[0],None,[256],[0,256]).ravel()
            cdf  = hist.cumsum(); total = cdf[-1]
            clipv = clip_limit * total / 200.0
            lo    = np.searchsorted(cdf, clipv)
            hi    = np.searchsorted(cdf, total - clipv)
            alpha = 255 / max(hi - lo, 1)
            beta  = -lo * alpha
            out8  = (cv2.convertScaleAbs(p8, alpha=alpha, beta=beta)
                     if algo==0 else np.clip(p8*alpha+beta,0,255).astype(np.uint8))
        # back to original range
        return ((out8.astype(np.float32) / 255) * peak).astype(dtype)

    def read_plane(f: vs.VideoFrame, idx: int) -> np.ndarray:
        """Reads plane idx as (height×width) array via ctypes.from_address."""
        w, h   = clip.width, clip.height
        ptr     = f.get_read_ptr(idx)             # c_void_p
        addr    = ptr if isinstance(ptr, int) else ptr.value
        buf_len = w * h
        # Create ctypes array and convert
        buf_type = ctype * buf_len
        buf      = buf_type.from_address(addr)
        arr      = np.ctypeslib.as_array(buf)    # 1D array
        return arr.reshape((h, w))

    def write_plane(f: vs.VideoFrame, idx: int, data: np.ndarray):
        """Writes data (h×w) back to plane idx."""
        w, h   = clip.width, clip.height
        ptr     = f.get_write_ptr(idx)
        addr    = ptr if isinstance(ptr, int) else ptr.value
        buf_len = w * h
        buf_type = ctype * buf_len
        buf      = buf_type.from_address(addr)
        arr      = np.ctypeslib.as_array(buf).reshape((h, w))
        arr[:, :] = data

    def selector(n: int, f):
        # f can be VideoFrame or [VideoFrame]; ~> we take f[0] if list
        frame = f if isinstance(f, vs.VideoFrame) else f[0]
        # Read Y, U, V
        y = read_plane(frame, 0)
        u = read_plane(frame, 1)
        v = read_plane(frame, 2)

        # Apply method
        if   method == 0:
            y2 = _process_plane(y,    "clahe", 0)
        elif method == 1:
            y2 = _process_plane(y,    "hist",  0)
            u  = _process_plane(u,    "hist",  0)
            v  = _process_plane(v,    "hist",  0)
        elif method == 2:
            y2 = _process_plane(y,    "clahe", 0)
            u  = _process_plane(u,    "clahe", 0)
            v  = _process_plane(v,    "clahe", 0)
        elif method == 3:
            y1 = _process_plane(y,    "clahe", 0)
            y3 = _process_plane(y,    "hist",  0)
            y2 = ((y1 + y3) / 2).astype(dtype)
        elif method == 4:
            y2 = _process_plane(y,    "scale", 0)
        else:  # method == 5
            y2 = _process_plane(y,    "scale", 1)

        # Blend
        y_out = ((1 - strength)*y + strength*y2).astype(dtype)

        # Build new frame
        fout = frame.copy()
        write_plane(fout, 0, y_out)
        write_plane(fout, 1, u)
        write_plane(fout, 2, v)
        return fout

    # Use ModifyFrame (Selector returns VideoFrame)
    return core.std.ModifyFrame(clip=clip, clips=clip, selector=selector)
Which only works on Y.

Cu Selur
----
Dev versions are in the 'experimental'-folder of my GoogleDrive, which is linked on the download page.
Reply


Forum Jump:


Users browsing this thread: 1 Guest(s)