those are the files I used. (checked vs-ddcolor, I did use that version and made a mistake when writing the post above)
No, I get the exact same error when using ColorMNet.
Code:
clip = HAVC_main(clip=clip, EnableDeepEx=True, DeepExMethod=0, DeepExRefMerge=0, ScFrameDir=None, DeepExModel=0, DeepExEncMode=0, DeepExMaxMemFrames=0)[/coe]
I get:
[code]
2024-09-26 18:11:54.387
F:\Hybrid\64bit\Vapoursynth\Lib\site-packages\kornia\feature\lightglue.py:44: FutureWarning: `torch.cuda.amp.custom_fwd(args...)` is deprecated. Please use `torch.amp.custom_fwd(args..., device_type='cuda')` instead.
@torch.cuda.amp.custom_fwd(cast_inputs=torch.float32)
F:\Hybrid\64bit\Vapoursynth\Lib\site-packages\kornia\feature\lightglue.py:44: FutureWarning: `torch.cuda.amp.custom_fwd(args...)` is deprecated. Please use `torch.amp.custom_fwd(args..., device_type='cuda')` instead.
@torch.cuda.amp.custom_fwd(cast_inputs=torch.float32)
F:\Hybrid\64bit\Vapoursynth\Lib\site-packages\vsdeoldify\deepex\models\vgg19_gray.py:130: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
model.load_state_dict(torch.load(vgg19_gray_path))
F:\Hybrid\64bit\Vapoursynth\Lib\site-packages\vsdeoldify\deepex\models\vgg19_gray.py:130: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
model.load_state_dict(torch.load(vgg19_gray_path))
2024-09-26 18:12:10.191
Failed to evaluate the script:
Python exception: DLL load failed while importing spatial_correlation_sampler_backend: Die angegebene Prozedur wurde nicht gefunden.
Traceback (most recent call last):
File "src\\cython\\vapoursynth.pyx", line 3387, in vapoursynth._vpy_evaluate
File "src\\cython\\vapoursynth.pyx", line 3388, in vapoursynth._vpy_evaluate
File "J:\tmp\tempPreviewVapoursynthFile18_11_49_389.vpy", line 45, in
clip = HAVC_main(clip=clip, EnableDeepEx=True, DeepExMethod=0, DeepExRefMerge=0, ScFrameDir=None, DeepExModel=0, DeepExEncMode=0, DeepExMaxMemFrames=0)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "F:\Hybrid\64bit\Vapoursynth\Lib\site-packages\vsdeoldify\__init__.py", line 297, in HAVC_main
clip_colored = HAVC_deepex(clip=clip, clip_ref=clip_ref, method=DeepExMethod, render_speed=DeepExPreset,
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "F:\Hybrid\64bit\Vapoursynth\Lib\site-packages\vsdeoldify\__init__.py", line 574, in HAVC_deepex
clip_colored = vs_colormnet(clip, clip_ref, image_size=-1, enable_resize=enable_resize,
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "F:\Hybrid\64bit\Vapoursynth\Lib\site-packages\vsdeoldify\vsslib\vsmodels.py", line 37, in vs_colormnet
return vs_colormnet_batch(clip, clip_ref, image_size, enable_resize, frame_propagate, max_memory_frames)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "F:\Hybrid\64bit\Vapoursynth\Lib\site-packages\vsdeoldify\colormnet\__init__.py", line 199, in vs_colormnet_batch
colorizer = colormnet_colorizer(image_size=image_size, vid_length=vid_length, enable_resize=enable_resize,
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "F:\Hybrid\64bit\Vapoursynth\Lib\site-packages\vsdeoldify\colormnet\__init__.py", line 45, in colormnet_colorizer
return ColorMNetRender(image_size=image_size, vid_length=vid_length, enable_resize=enable_resize,
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "F:\Hybrid\64bit\Vapoursynth\Lib\site-packages\vsdeoldify\colormnet\colormnet_render.py", line 83, in __init__
self._colorize_init(image_size, vid_length, propagate)
File "F:\Hybrid\64bit\Vapoursynth\Lib\site-packages\vsdeoldify\colormnet\colormnet_render.py", line 137, in _colorize_init
self.network = ColorMNet(self.config, self.config['model']).cuda().eval()
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "F:\Hybrid\64bit\Vapoursynth\Lib\site-packages\vsdeoldify\colormnet\model\network.py", line 37, in __init__
self.short_term_attn = LocalGatedPropagation(d_qk=64, # 256
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "F:\Hybrid\64bit\Vapoursynth\Lib\site-packages\vsdeoldify\colormnet\model\attention.py", line 763, in __init__
from spatial_correlation_sampler import SpatialCorrelationSampler
File "F:\Hybrid\64bit\Vapoursynth\Lib\site-packages\spatial_correlation_sampler\__init__.py", line 1, in
from .spatial_correlation_sampler import SpatialCorrelationSampler, spatial_correlation_sample
File "F:\Hybrid\64bit\Vapoursynth\Lib\site-packages\spatial_correlation_sampler\spatial_correlation_sampler.py", line 6, in
import spatial_correlation_sampler_backend as correlation
ImportError: DLL load failed while importing spatial_correlation_sampler_backend: Die angegebene Prozedur wurde nicht gefunden.
I got a backup of an old environment, but not getting it working with Vapoursynth R70 is a problem.